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1 Introduction

A common interest among economists and policymakers is harnessing vast predictive in-

formation to forecast important economic aggregates like national product or stock market

value. However, it can be difficult to use this wealth of information in practice. If the pre-

dictors number near or more than the number of observations, the standard ordinary least

squares (OLS) forecaster is known to be poorly behaved or nonexistent.1

How then does one effectively use vast predictive information? A solution well known in

the economics literature views the data as generated from a model in which latent factors

drive the systematic variation of both the forecast target, y, and the matrix of predictors,

X. In this setting, the best prediction of y is infeasible since the factors are unobserved. As

a result, a factor estimation step is required. The literature’s benchmark method extracts

factors that are significant drivers of variation in X and then uses these to forecast y.

Our procedure springs from the idea that the factors that are relevant to y may be a

strict subset of all the factors driving X. Our method, called the three-pass regression filter

(3PRF), selectively identifies only the subset of factors that influence the forecast target

while discarding factors that are irrelevant for the target but that may be pervasive among

predictors. The 3PRF has the advantage of being expressed in closed form and virtually

instantaneous to compute.

This paper makes four main contributions. The first is to develop asymptotic theory for

the 3PRF. We begin by proving that the estimator converges in probability to the infeasible

best forecast in the (simultaneous) limit as cross section size N and time series dimension

T become large. This is true even when variation in predictors is dominated by target-

irrelevant factors. We then derive the limiting distributions for the estimated forecasts and

predictive coefficients, and provide consistent estimators of asymptotic covariance matrices

that can be used to perform inference. The second contribution of the paper is to verify the

1See Huber (1973) on the asymptotic difficulties of least squares when the number of regressors is large
relative to the number of data points.
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finite sample accuracy of our asymptotic theory through Monte Carlo simulations.

We also show that the method of partial least squares (PLS) is a special case of the 3PRF.

Like partial least squares, the 3PRF can use the forecast target to discipline its dimension

reduction. This emphasizes the covariance between predictors and target in the factor esti-

mation step. But unlike PLS, the 3PRF also allows the econometrician to select additional

disciplining variables, or factor proxies, on the basis of economic theory. Furthermore, be-

cause it is a special case of our methodology, the asymptotic theory we develop for the 3PRF

applies directly to partial least squares. Recently Groen and Kapetanios (2009) showed the

consistency of PLS under sequential N, T limits, while our approach proves consistency in

the less restrictive simultaneous N, T limit. Those authors do not derive limiting distribu-

tions as we do here and so, to the best of our knowledge, our joint N and T asymptotics are

new results to the PLS literature.

In our third contribution, we compare the 3PRF to other methods in order to illustrate

the source of its improvement in forecasting performance. The economics literature has

relied mainly on principal component regression (PCR) for forecasting problems involving

many predictors, exemplified by Stock and Watson (1998, 2002a,b, 2006, 2012), Forni and

Reichlin (1996, 1998), Bai and Ng (2002, 2006, 2008), Bai (2003) and Boivin and Ng (2006),

among others.2 Like the 3PRF, PCR can be calculated instantaneously for virtually any

N and T . Stock and Watson’s key insight is to condense information from the large cross

section into a small number of predictive indices before estimating a linear forecast. PCR

condenses the cross section according to covariance within the predictors. This identifies the

factors driving the panel of predictors, some of which may be irrelevant for the dynamics of

the forecast target, and uses those factors to forecast.

In contrast, the 3PRF condenses the cross section according to covariance with the forecast

target. PCR must estimate all common factors among predictors to achieve consistency,

2The model investigated by Forni, Hallin, Lippi and Reichlin (2000, 2004, 2005) concentrates on a fre-
quency domain approach.
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including those that are irrelevant for forecasting. The 3PRF need only estimate the relevant

factors, which are always less than or equal to the total number of factors required by PCR.

While this difference is innocuous in large samples, it can be a crucial consideration in small

samples.

We are not the first to investigate potential improvements upon PCR factor-based fore-

casts. Doz, Giannone and Reichlin (2012) propose quasi-maximum likelihood factor estima-

tion as an alternative to PCR. Bai and Ng (2008) propose statistical thresholding rules that

drop variables found to contain irrelevant information, building on the insights in Boivin

and Ng (2006). In a similar vein, De Mol, Giannone and Reichlin (2008) propose Bayesian

shrinkage methods. Thresholding and shrinkage methods are especially useful when relevant

information is non-pervasive and confined to a subset of predictors. This does not solve

the problem of pervasive irrelevant information among predictors. Our approach explicitly

allows for both relevant and irrelevant pervasive factors.3

The final contribution of the paper is to provide empirical support for the 3PRF’s strong

forecasting performance in simulations and two separate empirical applications. We compare

3PRF to PCR, thresholding methods of Bai and Ng (2008), shrinkage methods of De Mol,

Giannone and Reichlin (2008), and the factor analytic approach of Doz, Giannone and

Reichlin (2012). Simulations show that the 3PRF often outperforms alternatives across a

variety of factor model specifications. In empirical applications, we find that the 3PRF is a

successful predictor of macroeconomic aggregates and equity market returns, and typically

outperforms alternative methods.

The paper is structured as follows. Section 2 defines the 3PRF and proves its asymptotic

properties. Section 3 reinterprets the 3PRF as a constrained least squares solution, then

compares and contrasts it with partial least squares. Section 4 explores the finite sample

performance of the 3PRF and other methods in Monte Carlo experiments. Section 5 reports

3We also demonstrate that the performance of 3PRF is robust to cases where relevant information is
non-pervasive – that is, when only a subset of predictors have non-zero loadings on the relevant factors.
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empirical results for 3PRF and other methods’ forecasts in asset pricing and macroeconomic

applications. All proofs and supporting details are placed in the appendix.

2 The Three-Pass Regression Filter

2.1 The Estimator

There are several equivalent approaches to formulating our procedure, each emphasizing

a related interpretation of the estimator. We begin with what we believe to be the most

intuitive formulation of the filter, which is the sequence of OLS regressions that gives the

estimator its name.

First we establish the environment wherein we use the 3PRF. There is a target variable

which we wish to forecast. There exist many predictors which may contain information useful

for predicting the target variable. The number of predictors N may be large and number

near or more than the available time series observations T , which makes OLS problematic.

Therefore we look to reduce the dimension of predictive information, and to do so we assume

the data can be described by an approximate factor model. In order to make forecasts, the

3PRF uses proxies : These are variables, driven by the factors (and as we emphasize below,

driven by target-relevant factors in particular), which we show are always available from the

target and predictors themselves, but may alternatively be supplied to the econometrician on

the basis of economic theory. The target is a linear function of a subset of the latent factors

plus some unforecastable noise. The optimal forecast therefore comes from a regression on

the true underlying relevant factors. However, since these factors are unobservable, we call

this the infeasible best forecast.

We write y for the T ×1 vector of the target variable time series from 2, 3, . . . , T +1.4 Let

4Nothing prevents us from generalizing this to consider direct forecasts of yt+h for h ∈ {1, 2, . . .} – the
theory is identical. For exposition’s sake we deal only with yt+1, knowing that t+ 1 could instead be t+ h
but everything that follows would still hold.
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X be the T × N matrix of predictors, X = (x′1,x
′
2, . . . ,x

′
T )′ = (x1,x2, · · · ,xN) that have

been standardized to have unit time series variance. Note that we are using two different

typefaces to denote the N -dimensional cross section of predictors observed at time t (xt), and

the T -dimensional time series of the ith predictor (xi). This is to distinguish the time series

of predictors from the cross section of predictors in Table 1. We denote the T ×L matrix of

proxies as Z, which stacks period-by-period proxy data as Z = (z′1, z
′
2, . . . ,z

′
T )′. We make

no assumption on the relationship between N and T but assume L << min(N, T ) in the

spirit of dimension reduction. We provide additional details regarding the data generating

processes for y, X and Z in Assumption 1 below.

With this notation in mind, the 3PRF’s regression-based construction is defined in Table

1. The first pass runs N separate time series regressions, one for each predictor. In these

first pass regressions, the predictor is the dependent variable, the proxies are the regressors,

and the estimated coefficients describe the sensitivity of the predictor to factors represented

by the proxies. As we show later, proxies need not represent specific factors and may be

measured with noise. The important requirement is that their common components span

the space of the target-relevant factors.

The second pass uses the estimated first-pass coefficients in T separate cross section

regressions. In these second pass regressions, the predictors are again the dependent variable

while the first-pass coefficients φ̂i are the regressors. Fluctuations in the latent factors cause

the cross section of predictors to fan out and compress over time. First-stage coefficient

estimates map the cross-sectional distribution of predictors to the latent factors. Second-

stage cross section regressions use this map to back out estimates of the factors at each point

in time.5

We then carry forward the estimated second-pass predictive factors F̂ t to the third pass.

5If coefficients were observable, this mapping would be straightforward since factors could be directly
estimated each period with cross section regressions of predictors on the loadings. While the loadings in our
framework are unobservable, the same intuition for recovering the factor space applies to our cross section
regressions. The difference is that we use estimated loadings as stand-ins for the unobservable true loadings.
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This is a single time series forecasting regression of the target variable yt+1 on the second-

pass estimated predictive factors F̂ t. The third-pass fitted value β̂0 + F̂
′
tβ̂ is the 3PRF

time t forecast. Because the first-stage regression takes an errors-in-variables form, second-

stage regressions produce an estimate for a unique but unknown rotation of the latent factors.

Since the relevant factor space is spanned by F̂ t, the third-stage regression delivers consistent

forecasts.

An alternative representation for the 3PRF is the one-step closed form:

ŷ = ιT ȳ + JTXWXZ (W ′
XZSXXWXZ)

−1
W ′

XZsXy. (1)

where JT ≡ IT− 1
T
ιT ι
′
T for IT the T -dimensional identity matrix and ιT the T -vector of ones

(JN is analogous), ȳ = ι′Ty/T , WXZ ≡ JNX ′JTZ, SXX ≡ X ′JTX and sXy ≡ X ′JTy.

J matrices enter because each regression pass is run with a constant.

The closed form is central to the theoretical development that follows. Nonetheless, the

regression-based procedure in Table 1 remains useful for two reasons. First, in practice

(particularly with many predictors) one often faces unbalanced panels and missing data.

The 3PRF as described in Table 2 easily handles these difficulties. Second, it is useful for

developing intuition behind the procedure and for understanding its relation to partial least

squares.

We can rewrite the forecast as

ŷ = ιT ȳ + F̂ β̂

F̂
′
= SZZ (W ′

XZSXZ)
−1
W ′

XZX
′, (2)

β̂ = SZZWXZSXZ (W ′
XZSXXWXZ)

−1
W ′

XZsXy (3)

where SXZ ≡ X ′JTZ. Here we interpret F̂ as our predictive factor and β̂ the predictive

coefficient on that factor. Since we have used the N predictors to construct a L-dimensional
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predictive factor, the 3PRF reduces the dimension of the forecasting problem.

Alternatively, we can rewrite the forecast

ŷ = ιȳ + JTXα̂

α̂ = WXZ (W ′
XZSXXW

′
XZ)

−1
W ′

XZsXy (4)

interpreting α̂ as the predictive coefficient on individual predictors. The regular OLS esti-

mate of the projection coefficient α is (SXX)−1 sXy. This representation suggests that our

approach can be interpreted as a constrained version of least squares (Proposition 8 shows

this formally below). We further discuss the properties of these estimators in subsections

2.3 and 2.4 after presenting our assumptions in the next subsection.

2.2 Assumptions

We next detail the modeling assumptions that provide a groundwork for developing asymp-

totic properties of the 3PRF.

Assumption 1 (Factor Structure). The data are generated by the following:

xt = φ0 + ΦF t + εt yt+1 = β0 + β′F t + ηt+1 zt = λ0 + ΛF t + ωt

X = ιφ′0 + FΦ′ + ε y = ιβ0 + Fβ + η Z = ιλ′0 + FΛ′ + ω

where F t = (f ′t, g
′
t)
′, Φ = (Φf ,Φg), Λ = (Λf ,Λg), and β = (β′f ,0

′)′ with |βf | > 0. Kf > 0

is the dimension of vector f t, Kg ≥ 0 is the dimension of vector gt, L is the dimension of

vector zt (0 < L < min(N, T )), and K = Kf +Kg.

Assumption 1 defines the factor structure. The target’s factor loadings (β = (β′f ,0
′)′)

allow the target to depend on a strict subset of the factors driving the predictors. We refer to

this subset as the relevant factors, which are denoted f t. In contrast, irrelevant factors, gt,
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do not influence the forecast target but may drive the cross section of predictive information

xt. The proxies zt are driven by factors and proxy noise.

Assumption 2 (Factors, Loadings and Residuals). Let M <∞. For any i, s, t

1. E‖F t‖4 < M , T−1
∑T

s=1 F s
p−−−→

T→∞
µ and T−1F ′JTF

p−−−→
T→∞

∆F

2. E‖φi‖4 ≤ M , N−1
∑N

j=1φj
p−−−→

T→∞
φ̄, N−1Φ′JNΦ

p−−−→
N→∞

P and N−1Φ′JNφ0

p−−−→
N→∞

P 1
6

3. E(εit) = 0,E|εit|8 ≤M

4. E (ωt) = 0,E||ωt||4 ≤M,T−1/2
∑T

s=1ωs = Op(1) and T−1ω′JTω
p−−−→

N→∞
∆ω

5. Et(ηt+1) = E(ηt+1|yt, Ft, yt−1, Ft−1, ...) = 0, E(η4
t+1) ≤ M , and ηt+1 is independent of

φi(m) and εi,t.

Since ηt+1 is a martingale difference sequence with respect to all information known at

time t, β0 +β′ff t gives the best time t forecast. But it is infeasible since the relevant factors

f t are unobserved.

We require factors and loadings to be cross-sectionally regular in that they have well-

behaved covariance matrices for large T and N , respectively. Assumption 2.4 does not exist

in the work of Stock and Watson or Bai and Ng, and is required because the 3PRF uses

proxies to extract factors. We bound the moments of proxy noise ωt in the same manner as

the bounds on factor moments.

Assumption 3 (Dependence). Let x(m) denote the mth element of x. For M < ∞ and

any i, j, t, s,m1,m2

1. E(εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij and |σij,ts| ≤ τts, and

6‖φi‖ ≤M can replace E‖φi‖4 ≤M if φi is non-stochastic.
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(a) N−1
∑N

i,j=1 σ̄ij ≤M

(b) T−1
∑T

t,s=1 τts ≤M

(c) N−1
∑

i,s |σii,ts| ≤M

(d) N−1T−1
∑

i,j,t,s |σij,ts| ≤M

2. E
∣∣∣N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεit − E (εisεit)]

∣∣∣2 ≤M

3. E
∣∣∣T−1/2

∑T
t=1 Ft(m1)ωt(m2)

∣∣∣2 ≤M

4. E
∣∣∣T−1/2

∑T
t=1 ωt(m1)εit

∣∣∣2 ≤M .

Assumption 4 (Central Limit Theorems). For any i, t

1. N−1/2
∑N

i=1φiεit
d−→ N (0,ΓΦε), where ΓΦε = plimN→∞N

−1
∑N

i,j=1 E
[
φiφ

′
jεitεjt

]
2. T−1/2

∑T
t=1 F tηt+1

d−→ N (0,ΓFη), where ΓFη = plimT→∞T
−1
∑T

t=1 E
[
η2
t+1F tF

′
t

]
> 0

3. T−1/2
∑T

t=1 F tεit
d−→ N (0,ΓFε,i), where ΓFε,i = plimT→∞T

−1
∑T

t,s=1 E [F tF
′
sεitεis] > 0.

Assumption 3 allows the factor structure to be approximate in the sense that some cross

section correlation among εit is permitted, following Chamberlain and Rothschild (1983).

Similarly, we allow for serial dependence among εit (including GARCH) as in Stock and

Watson (2002a). In addition, we allow some proxy noise dependence with factors and id-

iosyncratic shocks. Assumption 4 requires that central limit theorems apply, and is satisfied

when various mixing conditions hold among factors, loadings and shocks.

Assumption 5 (Normalization). P = I, P 1 = 0 and ∆F is diagonal, positive definite, and

each diagonal element is unique.

Assumption 5 recognizes that there exists an inherent unidentification between the factors

and factor loadings.7 It therefore selects a normalization in which the covariance of predictor

7Stock and Watson (2002a) summarize this point (we have replaced their symbols with our notation):

[B]ecause ΦF t = ΦRR−1F t for any nonsingular matrix R, a normalization is required to
uniquely define the factors. Said differently, the model with factor loadings ΦR and factors
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loadings is the identity matrix, and in which factors are orthogonal to one another. As with

principal components, the particular normalization is unimportant. We ultimately estimate

a vector space spanned by the factors, and this space does not depend upon the choice of

normalization.

Assumption 6 (Relevant Proxies). Λ = [Λf ,0] and Λf is nonsingular.

Assumption 6 states that proxies (i) have zero loading on irrelevant factors, (ii) have

linearly independent loadings on the relevant factors, and (iii) number equal to the number

of relevant factors. Combined with the normalization assumption, this says that the common

component of proxies spans the relevant factor space, and that none of the proxy variation

is due to irrelevant factors.

Note that Assumptions 2.4, 3.3, 3.4 and 6 are the only conditions involving the proxy

variables. We prove in Theorem 7 that automatic proxies, which are generally constructable

using X and y, are guaranteed to satisfy these proxy assumptions.

With these assumptions in place, we derive the asymptotic properties of the three-pass

regression filter. Our proofs build upon the seminal theory of Stock and Watson (2002a),

Bai (2003) and Bai and Ng (2002, 2006). Portions of auxiliary lemmas in the appendix

draw directly from convergence results proved in these previous papers. Theorems reported

in the main text are our central new results. In order to keep our theoretical development

self-contained, we catalogue all theoretical results in the appendix.

R−1F t is observationally equivalent to the model with factor loadings Φ and factors F t.
Assumption [5] restricts R to be orthonormal and ... restricts R to be a diagonal matrix with
diagonal elements of ±1.

We further discuss our normalization assumption in Appendix A.7. There we prove that a necessary condition
for convergence to the infeasible best forecast is that the number of relevant proxies equals the number of
relevant factors.
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2.3 Consistency

Theorem 1. Let Assumptions 1-6 hold. The three-pass regression filter forecast is consistent

for the infeasible best forecast, ŷt+1
p−−−−−→

T,N→∞
β0 + F ′tβ.

Theorem 1 says that the 3PRF is consistent so that for large N and T the difference

between this feasible forecast and the infeasible best vanishes. This and our other asymptotic

results are based on simultaneous N and T limits. As discussed by Bai (2003), the existence

of a simultaneous limit implies the existence of coinciding sequential and pathwise limits,

but the converse is not true. We refer readers to that paper for a more detailed comparison

of these three types of joint limits.

The appendix also establishes probability limits of first pass time series regression coeffi-

cients φ̂i, second pass cross section factor estimates F̂ t, and third stage predictive coefficients

β̂. While primarily serving as intermediate inputs to the proof of Theorem 1, in certain ap-

plications these probability limits are useful in their own right. We refer interested readers

to Lemmas 3 and 4 in the Appendix.

The estimated loadings on individual predictors, α̂, play an important role in the inter-

pretation of the 3PRF. The next theorem provides the probability limit for the loading on

each predictor i.

Theorem 2. Let α̂i denote the ith element of α̂, and let Assumptions 1-6 hold. Then for

any i,

Nα̂i
p−−−−−→

T,N→∞

(
φi − φ̄

)′
β.

The coefficient α maps underlying factors to the forecast target via the observable pre-

dictors. As a result the probability limit of α̂ is a product of the loadings of X and y on the

relevant factors f . This arises from the interpretation of α̂ as a constrained least squares

coefficient estimate, which we elaborate on in the next section. Note that α̂ is multiplied by

N in order to derive its limit. This is because the dimension of α̂ grows with the number of
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predictors. As N grows, the predictive information in f is spread across a larger number of

predictors so each predictor’s contribution approaches zero. Standardizing by N is necessary

to identify the non-degenerate limit.

What distinguishes these results from previous work using PCR is the fact that the 3PRF

uses only as many predictive factors as the number of factors relevant to yt+1. In contrast,

the PCR forecast is asymptotically efficient when there are as many predictive factors as the

total number of factors driving xt (Stock and Watson (2002a)). This distinction is especially

important when the number of relevant factors is strictly less than the number of total

factors in the predictor data and the target-relevant principal components are dominated

by other components in xt. In particular, if the factors driving the target are weak in the

sense that they contribute a only small fraction of the total variability in the predictors,

then principal components may have difficulty identifying them. Said another way, there is

no sense in which the method of principal components is assured to first extract predictive

factors that are relevant to yt+1. This point has in part motivated recent econometric work

on thresholding (Bai and Ng (2008)) and shrinking (Stock and Watson (2012)) principal

components for the purposes of forecasting.

On the other hand, the 3PRF identifies exactly those relevant factors in its second pass

factor estimation. This step extracts leading indicators – estimated factors that are specifi-

cally valuable for forecasting a given target. To illustrate how this works, consider the special

case in which there is only one relevant factor, and the sole proxy is the target variable yt+1

itself. We refer to this case as the target-proxy three-pass regression filter. The following

corollary is immediate from Theorem 1.

Corollary 1. Let Assumptions 1-5 hold with the exception of Assumptions 2.4, 3.3 and 3.4.

Additionally, assume that there is only one relevant factor. Then the target-proxy three-pass

regression filter forecaster is consistent for the infeasible best forecast.

Corollary 1 holds regardless of the number of irrelevant factors driving X and regardless
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of where the relevant factor stands in the principal component ordering for X. Compare

this to PCR, whose first predictive factor is ensured to be the one that explains most of the

covariance among xt, regardless of that factor’s relationship to yt+1. Only if the relevant

factor happens to also drive most of the variation within the predictors does the first com-

ponent achieve the infeasible best. It is in this sense that the forecast performance of the

3PRF is robust to the presence of irrelevant factors.

2.4 Asymptotic Distributions

Not only is the 3PRF consistent for the infeasible best forecast, each forecast has a normal

asymptotic distribution. We first derive the asymptotic distribution for α̂ since this is useful

for establishing the asymptotic distribution of forecasts.

Theorem 3. Under Assumptions 1-6, as N, T →∞ we have

√
TN (α̂i − α̃i)

Ai

d−→ N (0, 1)

where A2
i is the ith diagonal element of Âvar(α̂) = Ωα

(
1
T

∑
t η̂

2
t+1(X t − X̄)(X t − X̄)′

)
Ω′α,

η̂t+1 is the estimated 3PRF forecast error, α̃i ≡ SiGαβ, where Si is selects the ith element

of vector Gαβ and

Gα = JN
(
T−1X ′JTZ

) (
T−3N−2W ′

XZSXXWXZ

)−1 (
N−1T−2W ′

XZX
′JTF

)
,

and

Ωα = JN

(
1

T
SXZ

)(
1

T 3N2
W ′

XZSXXWXZ

)−1(
1

TN
W ′

XZ

)
.

While Theorem 2 demonstrates that α̂ may be used to measure the relative forecast

contribution of each predictor, Theorem 3 offers a distribution theory, including feasible t-

statistics, for inference. The Gα matrix appears here because the factors are only identified
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up to an orthonormal rotation.

From here, we derive the asymptotic distribution of the 3PRF forecasts.

Theorem 4. Under Assumptions 1-6, as N, T →∞ we have

√
T (ŷt+1 − Etyt+1)

Qt

d−→ N (0, 1)

where Etyt+1 = β0 + β′F t and Q2
t is the tth diagonal element of 1

N2JTXÂvar(α̂)X ′JT .

This result shows that besides being consistent for the infeasible best forecast Et(yt+1) ≡

β0 + β′F t, the 3PRF forecast is asymptotically normal and provides a standard error esti-

mator for constructing forecast confidence intervals. A subtle but interesting feature of this

result is that we only need the asymptotic variance of individual predictor loadings Âvar(α̂)

for the prediction intervals. This differs from the confidence intervals of PCR forecasts in

Bai and Ng (2006), which require an estimate of the asymptotic variance for the predictive

factor loadings (the analogue of our Âvar(β̂) below) as well as an estimate for the asymp-

totic variance of the fitted latent factors, Âvar(F̂ ). Unlike PCR, our framework allows us

to represent loadings on individual predictors in a convenient algebraic form, α̂. Inspection

of α̂ reveals why variability in both β̂ and F̂ is captured by Âvar(α̂).

Next, we provide the asymptotic distribution of predictive loadings on the latent factors

and a consistent estimator of their asymptotic covariance matrix.

Theorem 5. Under Assumptions 1-6, as N, T →∞ we have

√
T
(
β̂ −Gββ

)
d−→ N (0,Σβ)

where Σβ = Σ−1
z ΓFηΣ

−1
z and Σz = Λ∆FΛ′ + ∆ω. Furthermore,

Âvar(β̂) =
(
T−1F̂

′
JT F̂

)−1

T−1
∑
t

η̂2
t+1(F̂ t − µ̂)(F̂ t − µ̂)′

(
T−1F̂

′
JT F̂

)−1
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is a consistent estimator of Σβ. Gβ is defined in the appendix.

We also derive the asymptotic distribution of the estimated relevant latent factor rotation.

Theorem 6. Under Assumptions 1-6, as N, T →∞ we have for every t

(i) if
√
N/T → 0, then

√
N
[
F̂ t − (H0 +HF t)

]
d−→ N (0,ΣF )

(ii) if lim inf
√
N/T ≥ τ ≥ 0, then

T
[
F̂ t − (H0 +HF t)

]
= Op(1)

where ΣF = (Λ∆FΛ′ + ∆ω)
(
Λ∆2

FΛ′
)−1

Λ∆FΓΦε∆FΛ′
(
Λ∆2

FΛ′
)−1

(Λ∆FΛ′ + ∆ω). H0

and H are defined in the appendix.

The matrices Gβ and H are present since we are in effect estimating a vector space.

Quoting Bai and Ng (2006), Theorems 5 and 6 in fact “pertain to the difference between

[F̂ t/β̂] and the space spanned by [F t/β].” Note that we do not provide an estimator the

asymptotic variance of F̂ . While under some circumstances such an estimator is available,

this is not generally the case. In particular, when there exist irrelevant factors driving the

predictors, the 3PRF only estimates the relevant factor subspace. This complicates the

construction of a consistent estimator of Avar(F̂ ). Estimators for the asymptotic variance

of α̂, β̂ and ŷt+1 do not confront this difficulty for reasons discussed following Theorem 4.

2.5 Proxy Selection

The formulation of the filter, and its success in forecasting even when principal components

that dominate cross section variation are irrelevant to the forecast target, relies on the

existence of proxies that depend only on target-relevant factors. This begs the question: Need
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we make an a priori assumption about the availability of such proxies? The answer is no –

there always exist readily available proxies that satisfy the relevance criterion of Assumption

6. They are obtained from an automatic proxy selection algorithm which constructs proxies

that depend only upon relevant factors. For now we treat the true number of relevant factors

as known, and return to a discussion of statistical criteria for selecting the appropriate

number of 3PRF factors in Section 4.2.

2.5.1 Automatic Proxies

By definition, the target variable depends only on the relevant factors and therefore satisfies

Assumptions 2.4, 3.3, 3.4, and 6 when there is one relevant factor (Kf = 1). This logic is

exploited to prove Corollary 1. If Kf > 1, the target-proxy 3PRF does not extract enough

factors to asymptotically attain the infeasible best.8 In this case we can improve upon the

target-proxy 3PRF by selecting additional proxies that depend only on relevant factors. We

obtain the second proxy by noting that residuals from target-proxy 3PRF forecasts also

satisfy Assumption 6 since they have non-zero loading on relevant factors (which follows

from the insufficiency of the target-only proxy), have zero loading on irrelevant factors (by

definition), and are linearly independent of the first proxy. From here, proxy construction

proceeds iteratively: Use the residual from the target-proxy 3PRF as the second proxy, use

the residual from this two-proxy 3PRF as the third proxy, etc. The details of the automatic

proxy-selection algorithm are given in Table 2. When this algorithm is iterated to construct

L predictive factors, we call the forecaster the L-automatic-proxy 3PRF.

In order to map the automatic proxy selection approach into the consistency and asymp-

totic normality results presented above, it is necessary to show that the proxies produced by

the algorithm satisfy Assumptions 2.4, 3.3, 3.4, and 6. This is established by the following

8While we may always recast the system in terms of a single relevant factor β′ff t and rotate the remaining
factors to be orthogonal to it, this does not generally alleviate the requirement for as many proxies as relevant
factors. As we demonstrate in Appendix A.7, this is because rotating the factors necessarily implies a rotation
of factor loadings. Taking both rotations into account recovers the original requirement for as many relevant
proxies as relevant factors.
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result.

Theorem 7. Let Assumptions 1-5 hold with the exception of Assumptions 2.4, 3.3, and

3.4. Then the L-automatic-proxy three pass regression filter forecaster of y automatically

satisfies Assumptions 2.4, 3.3, 3.4, and 6 when L = Kf . As a result, the L-automatic-proxy

is consistent and asymptotically normal according to Theorems 1 and 4.

Theorem 7 states that the 3PRF is generally available since the conditions of Theorems

1 and 4 can be satisfied by the construction of automatic proxies. Clearly, then, the only

variables absolutely required to implement the filter are y and X.

2.5.2 Theory Proxies

The use of automatic proxies in the three-pass filter disciplines dimension reduction of the

predictors by emphasizing the covariance between predictors and target in the factor estima-

tion step. The filter may instead be employed using alternative disciplining variables (factor

proxies) which may be distinct from the target and chosen on the basis of economic theory

or by statistical arguments. Consider a situation in which Kf is one, so that the target and

proxy are given by yt+1 = β0 + βft + ηt+1 and zt = λ0 + Λft + ωt. Also suppose that the

population R2 of the proxy equation is substantially higher than the population R2 of the

target equation.

The forecasts from using either zt or the target as proxy are asymptotically identical.

However, in finite samples, forecasts can be improved by proxying with zt due to its higher

signal-to-noise ratio.9 To illustrate this point, in Section 5 we consider a macroeconomic

application of theory proxies. We find that improved out-of-sample forecasts of inflation

come by imposing a dynamic quantity theory of inflation. These forecasts have an attractive

feature that they can accurately be described as embodying an economic narrative – that

9On the other hand, if theory-motivated proxies are weakly correlated with the true relevant factors, then
the 3PRF will break down and fail to identify a meaningful forecasting relationship. This point is raised by
Kleibergen and Zhan (2013) in the context of Fama-MacBeth (1973) two-pass regression.
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output and money growth fuel price inflation – that could serve to make the forecasts more

appealing to policy-makers or institutional investors.

3 Related Procedures

Comparing our procedure to other methods develops intuition for why the 3PRF produces

powerful forecasts. Adding to our earlier comparisons with PCR, this section evaluates the

link between the 3PRF and constrained least squares and partial least squares. Importantly,

we show that the 3PRF is the constrained least squares estimate of the projection of y onto

X. The constraint we impose embodies the assumption that proxies span the relevant factor

space.10 It happens that partial least squares emerges as a special case of the 3PRF using

automatic proxies.

3.1 Constrained Least Squares

Section 2.1 demonstrates that the forecast ŷt+1 may be represented not only in terms of

factor loadings (β̂), but equivalently in terms of loadings on individual predictors (α̂). The

ith element of coefficient vector α̂ provides a direct statistical description for the forecast

contribution of predictor xi when it is combined with the remaining N − 1 predictors. In

fact, α̂ is an N -dimensional projection coefficient, and is available when N is near or even

greater than T . This object allows us to address questions that would typically be answered

by the multiple regression coefficient in settings where OLS is unsatisfactory. As discussed

by Cochrane (2011) in his presidential address to the American Finance Association:

[W]e have to move past treating extra variables one or two at a time, and under-

stand which of these variables are really important. Alas, huge multiple regression

10Of course, this span can be measured with error in the sense formalized by our assumptions regarding
the proxy noise ω.
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is impossible. So the challenge is, how to answer the great multiple-regression

question, without actually running huge multiple regressions?

The 3PRF estimator α̂ provides an answer. It is a projection coefficient relating yt+1 to xt

under the constraint that irrelevant factors do not influence forecasts. That is, the 3PRF

forecaster may be derived as the solution to a constrained least squares problem, as we

demonstrate in the following proposition.

Theorem 8. The three-pass regression filter’s implied N-dimensional predictive coefficient,

α̂, is the solution to

argmin
α0,α
||y − α0 −Xα||

subject to (I −WXZ(S′XZWXZ)−1WXZ)α = 0. (5)

This solution is closely tied to the original motivation for dimension reduction: The

unconstrained least squares forecaster is poorly behaved when N is large relative to T . The

3PRF’s answer is to impose the constraint in equation (5), which exploits the proxies and

has an intuitive interpretation. Premultiplying both sides of the equation by JTX, we can

rewrite the constraint as (JTX − JT F̂ Φ̂
′
)α = 0. For large N and T ,

JTX − JT F̂ Φ̂
′
≈ ε+ (F − µ)(I − SKf

)Φ′

which follows from Lemma 6 in the appendix. Because the covariance between α and ε is zero

by the assumptions of the model,11 the constraint simply imposes that the product of α and

the target-irrelevant common component of X is equal to zero. This is because the matrix

I−SKf
selects only the terms in the total common component FΦ′ that are associated with

irrelevant factors. This constraint is important because it ensures that factors irrelevant to

y drop out of the 3PRF forecast. It also ensures that α̂ is consistent for the factor model’s

11This follows from Theorem 2, which shows that α̂ converges to JNΦβ.
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population projection coefficient of yt+1 on xt.

3.2 Partial Least Squares

The method of partial least squares, or PLS (Wold (1975), described in Appendix A.10), is

a special case of the three-pass regression filter. In particular, partial least squares forecasts

are identical to those from the 3PRF when (i) the predictors are demeaned and variance-

standardized in a preliminary step, (ii) the first two regression passes are run without con-

stant terms and (iii) proxies are automatically selected. As an illustration, consider the case

where a single predictive index is constructed from the partial least squares algorithm. As-

sume, for the time being, that each predictor has been previously standardized to have mean

zero and variance one. Following the construction of the PLS forecast given in Appendix

A.10 we have

1. Set φ̂i = x′iy, and Φ̂ = (φ̂1, ..., φ̂N)′

2. Set ût = x′tΦ̂, and û = (û1, ..., ûT )′

3. Run a predictive regression of y on û.

Constructing the forecast in this manner may be represented as a one-step estimator

ŷPLS = XX ′y(y′XX ′XX ′y)−1y′XX ′y

which upon inspection is identical to the 1-automatic-proxy 3PRF forecast when constants

are omitted from the first and second passes. Repeating the comparison of 3PRF and PLS

when constructing additional predictive factors under conditions (i)-(iii) shows that this

equivalence holds more generally.

How do the methodological differences between the auto-proxy 3PRF and PLS embodied

by conditions (i)-(iii) affect forecast performance? First, since both methods (like PCR as
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well) lack scale-invariance, they each work with variance-standardized predictors. For PLS,

the demeaning of predictors and omission of a constant in first pass regressions offset each

other and produce no net difference versus the auto-proxy 3PRF. The primary difference

therefore lies in the estimation of a constant in the second stage cross section regression

of the auto-proxy 3PRF. A simple example in the context of the underlying factor model

assumptions of this paper helps identify when estimating a constant in cross section regres-

sions is useful. Consider the special case of Assumption 1 in which Kf = 1 and Kg = 1,

the predictors and factors have mean zero, and the relevant factor’s loadings are known.

In this case, xit = φi1ft + φi2gt + εit, and the second stage population regression of xit

on φi1 when including a constant yields a slope estimate of limN→∞ f̂t = ft + gt
Cov(φi1,φi2)
V ar(φi1)

,

which reduces to ft by Assumption 2.2 and 5. The slope estimate omitting the constant is

limN→∞ f̂t = ft+gt
E[φi1φi2]

E[φ2i1]
. This is an error-ridden version of the true target-relevant factor,

and thus can produce inferior forecasts.

Because PLS is a special case of our methodology, the asymptotic theory we have de-

veloped for the 3PRF applies directly to PLS estimates. Our results therefore provide a

means of conducting inference when applying PLS. Groen and Kapetanios (2009) proved

the consistency of PLS using sequential N, T limits and weak factor assumptions, but did

not derive limiting distributions. To the best of our knowledge, our simultaneous N and T

asymptotics are new results for the PLS literature.

4 Simulation Evidence

4.1 Comparison Against Alternatives

We conduct Monte Carlo experiments to examine the finite sample accuracy of 3PRF fore-

casts.12 Our simulations focus on out-of-sample forecast performance and compare this

12In the appendix, we report Monte Carlo simulations that evaluate whether the asymptotic distribution
theory developed in Section 2 is a good approximation of the finite sample distribution of 3PRF estimates.
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against five alternative procedures. The first alternative is PCR using the first five principal

components (PCR5 henceforth), as advocated by Stock and Watson (2002a, 2012). The

second and third are least-angle regression and LASSO versions of the “targeted predictors”

approach proposed by Bai and Ng (2008). Here, the L1 tuning parameter is adjusted to select

a group of 30 targeted predictors, from which five principal components are then extracted

and used for forecasting. We call these procedures PCLAR and PCLAS, respectively. The

fourth alternative follows the Bayesian shrinkage approach proposed by De Mol, Giannone,

and Reichlin (2008). Shrinkage motivates LAR/LASSO wherein the L1 tuning parameter

is adjusted to select a group of 10 predictors.13 We call this procedure 10LAR. Finally,

we consider the quasi-maximum likelihood factor analysis approach of Doz, Giannone, and

Reichlin (2012) extracting five factors. We call this procedure FA. We compare each of

those multivariate forecasts to forecasts from single predictive index constructed from the

target-proxy 3PRF (denoted 3PRF1).

Our simulations use a range of specifications to examine how performance of the estimators

is affected by various data features that may complicate factor extraction and forecasting.

These include serial correlation in common factors and serial or cross-sectional correlation

in idiosyncratic shocks. We also explore how the strength of the factor structure affects

performance. By factor strength, we mean the proportion of variation among predictors

that is due to the common factors. Lastly, we consider how the pervasiveness of the factor

structure impacts estimator performance, where we define “pervasiveness” as the fraction of

predictors with non-zero loadings on common factors.

Table 3 reports the out-of-sample forecasting performance across estimators using simu-

lated data. We simulate data according to Assumption 1 using one relevant factor and four

irrelevant factors in all cases. We use data sets of dimension N, T = 100 or N, T = 200. For

each parameter configuration, we conduct 5,000 simulations and report the median out-of-

13De Mol, Giannone and Reichlin’s (2008) empirical exercise found that roughly ten predictors gave them
the best forecast performance, and so we use that specification. Similarly, Bai and Ng (2008) also consider
a LAR/LASSO procedure to select a group of five predictors.
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sample forecast percentage R2 for each method.14

The strength of the factor structure may be “normal” (Panel A), in which the predictors

have a median R2 of 30% on the factors, “moderately weak” (Panel B) with R2 of 20%, or

“weak” (Panel C) with R2 of 10%. The normal structure is roughly in line with the degree

of common variation documented in Stock and Watson’s (2002b) analysis of macroeconomic

data, while the weak structure is motivated by Groen and Kapetanios (2009) and Onatski

(2012). Because the factor loadings are drawn at random in each simulation, there is variation

across predictors in the fraction of their variance explained by the factors. In Panels A-C

we simulate a pervasive relevant factor, meaning that all predictors have a non-zero loading

on it. In Panel D, we report results when the relevant factor is non-pervasive by imposing

that half of the predictors have a loading of zero on the relevant factor, which should give

an advantage to variable-subset forecasters like PCLAR, PCLAS and 10LAR.

Our experimental design builds from Stock and Watson (2002a). We simulate factors as

ft = ρfft−1 + uf,t and gt = ρggt−1 + ug,t for uf,t ∼ IIN(0, 1) and ug,t ∼ IIN(0,Σg), with

uf,t and ug,t uncorrelated and Kf = 1, Kg = 4 so that K = 5. Parameters of the diagonal

matrix Σg are chosen so that irrelevant factors are dominant, in the sense that they have

variances 1.25, 1.75, 2.25 and 2.75 times larger than the relevant factor. The parameters

ρf and ρg govern serial correlation among factors and take values of 0, 0.3, or 0.9.15 We

set yt+1 = ft + σyηt+1 for ηt+1 ∼ IIN(0, 1) and adjust σy to ensure that the infeasible best

forecast has an R2 of 50%. Idiosyncratic errors are modeled as εi,t = aεi,t−1 + ε̃i,t, where a

governs their serial correlation and takes values of 0, 0.3 or 0.9. Cross-sectional correlation

among idiosyncrasies is specified via ε̃i,t = (1+d2)νi,t+dνi−1,t+dνi+1,t where νi,t is standard

normal and the cross-correlation parameter d takes values of 0 or 1. The factor loadings

for each predictor are drawn as standard normals, allowing cross section dispersion in the

14The R2 measure is related to the relative mean squared error (RMSE) statistic according to R2 =
1−RMSE. It summarizes the forecast performance of each estimator relative to a naive forecast based on
the target’s historical mean.

15For each persistence parameter, the parameters Σg are adjusted so that the relative factor volatilities
maintain the values specified above.

23



proportion of predictor variation explained by the factors.

The Monte Carlo results suggest that the single-factor 3PRF performs well under a vari-

ety of circumstances, often outperforming the alternative multi-factor methods considered.

There are a number of instances in which PCR and FA outperform the 3PRF, but only

slightly (in larger samples, when the factor structure is strong, when factors quickly mean

revert, and when there is little serial or cross-sectional correlation among predictor idiosyn-

crasies). On the other hand, the 3PRF often outperforms the alternatives by a wide margin,

for example in a weak factor structure when the sample size is small. Furthermore, in all

comparisons, 3PRF forecasts are based on a single estimated factor, while alternatives use

5 or 10 factors in the forecasting equation.

The presence of irrelevant factors causes more difficulty for PCR and FA than for 3PRF.

This is particularly evident when the sample is small, when there is strong serial correlation

in factors, and when serial or cross section dependence among residuals is strong. In these

circumstances, 3PRF generally continues to forecast successfully, while PCR or FA can fail

to detect any out-of-sample predictability. These effects are exacerbated in the weak factor

scenario, even absent dependence in the idiosyncratic shocks.

While no single forecasting method dominates across all data generating processes, our

central conclusion from the Monte Carlo is that the 3PRF demonstrates competitive out-of-

sample forecasting performance in finite samples under a wide range of specifications.16

4.2 Information Criteria

An information criterion (IC) may be used to select the appropriate number of 3PRF factors.

The IC approach to factor selection is especially relevant for the automatic proxy version

of the 3PRF, which is a statistically-motivated estimation procedure and is appropriately

16In supplementary Monte Carlo analyses, we find that out-of-sample forecasting performance for 3PRF
and PCR can be improved when the relevant factor is persistent (ρf = 0.9) by including lags of the target
and lags of the prediction indices.
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subject to an IC. In contrast, the number of theoretically-motivated proxies may best be

determined a priori by an underlying economic theory.

Kramer and Sugiyama (2011) provide an unbiased degrees of freedom calculation and

associated information criterion for PLS forecasting problems. We adopt their approach

to the automatic proxy 3PRF setting. As these authors highlight, the degrees of freedom

calculation is complicated by PLS’s reliance on the forecast target in the factor extraction

stage. This renders PLS a non-linear method and implies that the degrees of freedom for

a K-factor PLS forecast are generally greater than those for an OLS forecast based on K

exogenous regressors.17

We calculate degrees of freedom via the Krylov representation method of Kramer and

Sugiyama (2011), then use this to compute the Bayesian Information Criterion (BIC). Details

of this approach are given in Appendix A.9.

To study the BIC accuracy in our setting we simulate data according to the same data

generating processes used in Table 3. Results are reported in appendix Table A2 and show

that the information criterion is typically accurate in selecting the correct number of 3PRF

factors. For example, when N = T = 200 and the true number of factors is equal to one, the

average number of factors selected across simulations equals 1.0 in 15 of 27 specifications, and

is between 1.0 and 1.3 in 21 of 27. The BIC tends to overestimate the number of factors in

smaller samples and when the irrelevant factors and residuals exhibit strong serial correlation.

But even when too many 3PRF factors are selected, the method achieves powerful out-of-

sample forecasting performance and is typically close to the R2 achieved by the one-factor

3PRF. Further details are discussed in Appendix A.9

17The degrees of freedom calculation for the PCR forecasting problem is the same as that for OLS with
exogenous regressors. The forecasting IC differs from that studied in Bai and Ng (2002), who develop an IC
for selecting the appropriate number of factors to explain variation among the cross section of predictors.
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5 Empirical Evidence

Here we report the results of two separate empirical investigations. In the first empirical

investigation, we forecast macroeconomic aggregates using a well-known panel of quarterly

macroeconomic variables. In the second, we use a factor model to relate individual assets’

price-dividend ratios to market returns. We use the automatic-proxy 3PRF and compare

its performance to the forecast accuracy of alternative procedures. We consider the same

alternative procedures used for the simulation study: PCR (with number of factors selected

via Bai and Ng’s (2002) information criterion), PCLAR and PCLAS following Bai and Ng

(2008), 10LAR following De Mol, Giannone and Reichlin (2008), and FA following Doz,

Giannone and Reichlin (2012). Tests for statistical significance are provided by Diebold

and Mariano (1995) and West (1996) because the different forecast models do not neces-

sarily encompass one another. We end by considering examples of theory-proxies in our

macroeconomic application.

5.1 Forecasting Macroeconomic Aggregates

We examine the forecastability of macroeconomic aggregates based on a large number of

potential predictor variables. To maintain comparability to the literature, we take as our

predictors a set of 108 macroeconomic variables compiled by Stock and Watson (2012) up-

dated through the end of 2009.18 Any variable that we eventually target is removed from the

set of predictors. We focus attention on pseudo out-of-sample forecasting exercises described

in detail in Appendix A.11 and following Bai and Ng (2008) and Stock and Watson (2012).

We focus attention on macroeconomic aggregates that receive considerably attention in the

literature and policy-making circles. For 3PRF, PCR and FA we consider single factor im-

plementations because ours and Bai and Ng’s (2002) information criteria consistently choose

a single factor across forecast targets and training samples.

18Variants of this data set have been used by Bai and Ng (2008), Ludvigson and Ng (2009), and others.
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Table 4 presents our recursive out-of-sample forecasting results. In these macroeconomic

data we see a great deal similarity in different procedures’ out-of-sample forecast perfor-

mance. Even ordinary PCR1 does very well here, often beating more sophisticated proce-

dures involving LAR.19 The closest competitor is 10LAR which provides significantly supe-

rior forecasting performance in two cases. The 3PRF is a powerful forecaster across forecast

targets, and dominates alternatives in most cases. 3PRF provides the best forecasting per-

formance in eight of the thirteen series, and for two of these (consumption and industrial

production) its outperformance is statistically significant.

We find that different methods produce similar forecasts. The average time series corre-

lation between 3PRF and PCR forecasts for the targets in Table 4 is 83%. As noted in De

Mol et al. (2008), this is a reassuring indication that high-dimension methods are capturing

genuine data features.

5.2 Forecasting Market Returns

Asset return forecastability has been extensively examined in the asset pricing literature.20

Identifying return predictability is of interest to academic researchers because it measures

the extent to which risk premia fluctuate over time, and identifying the sources of risk premia

guides development of asset pricing theory.

The present value relationship between prices, discount rates and future cash flows has

proved a valuable lens for understanding price changes. It reveals that price changes are

wholly driven by fluctuations in investors’ expectations of future returns and cash flow growth

(Campbell and Shiller (1988) and Vuolteenaho (2002)). Building from the present value

identity, Kelly and Pruitt (2013) map the cross section of price-dividend ratios into the

approximate latent factor model of Assumption 1, and argue that this set of predictors

19These macroeconomic data correspond well to Stock and Watson’s (2002b) findings for factor strength.
The first five PCs explains an average of 29.5% of the predictors’ variation.

20Seminal studies include Rozeff (1984), Campbell and Shiller (1988), Fama and French (1988), Stambaugh
(1986), Cochrane (1992) and Hodrick (1992).
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should possess forecasting power for log returns on the aggregate market.

We estimate the extent of market return predictability using 25 log price-dividend ratios

of portfolios sorted by market equity and book-to-market ratio. The data is annual over the

post-war period 1945-2010 (following Fama and French (1992), see appendix for details of

our data construction). We assume that the predictors take the form pdi,t = φi,0 +φ′iF t+εi,t,

while the target takes the form rt+1 = βr0 + F ′tβ
r + ηrt+1.

Our out-of-sample analysis here is recursive, as in the case of the previous macroeconomic

application, which is common to this literature and described in detail in Appendix A.11.21

To maintain comparability to our previous macroeconomic results, we begin out-of-sample

forecasts in 1985.

We consider the performance of 3PRF, PCR and FA with one or two factors. We also use

ours or Bai and Ng’s (2002) information criteria to estimate the number of factors present

in the cross section of value ratios and report those results, as well as the (average) number

of factors chosen across all periods of the out-of-sample procedure, for both PCR and FA.

Finally, we report the 10LAR procedure of De Mol, Giannone and Reichlin (2008).22

Table 5 reports market return forecasts and shows that the 3PRF achieves strong out-of-

sample performance. The BIC picks one or two factors in most samples, with an average of

1.4. The 3PRF−IC finds an out-of-sample R2 of 31.1%, just below the 3PRF2 R2 of 36.3%.

This performance is significantly higher than what is achieved using PCR, 10LAR or FA.23

In fact, using just the first two PCs results in negative out-of-sample performance, and it

requires four or five PCs to extract relevant predictive information and obtain a 27% out-of-

sample R2. Among dimension reduction techniques, the 3PRF demonstrates the strongest

out-of-sample predictive power for aggregate returns.

21See Goyal and Welch (2008).
22We do not report the PCLAR or PCLAS procedures since our cross-sectional dimension is 25 and so

those procedures coincide with the PCR5 procedure which we implicitly consider in PC−IC.
23As has been well-documented in the literature, these financial data have a strong factor structure. The

first five PCs explain an average of 95.8% of the price-dividend ratios’ variation.

28



5.3 Examples of Theory Proxies for Macroeconomic Forecasts

Economic implementation of dimension reduction techniques often defy interpretation. They

are an amalgamation of different predictors which represent many different economic forces.24

As discussed in Section 2.5.2, the theory-proxy 3PRF provides an applied researcher the op-

portunity capture some economic interpretability within the dimension reduction procedure.

We now provide an example of this approach in the context of inflation forecasting.

Consider the problem of forecasting GDP inflation. Table 4 shows that it is difficult for

the previously-considered estimators to achieve significant out-of-sample predictability. Can

imposing an economic theory help? To answer this, we consider a dynamic version of the

quantity theory of money, building upon Fama (1981, 1982), that links next future inflation

πt+1 to the current growth in real output (fq,t) and money supply (fm,t)
25

πt+1 = a1fq,t + a2fm,t + errort+1.

Under this model, forecasts of future inflation may be obtained from observed output

growth(qt) and observed money growth (mt). But these quantities may themselves be subject

to measurement noise

qt = b0 + b1fq,t + ωy,t, mt = c0 + c1fm,t + ωm,t.

How do avoid an errors-in-variables problem? The error-ridden observables may be used as

3PRF theory-proxies for extracting inflation-relevant information from the cross section of

24Stock and Watson (2002b) address this issue by regressing the predictor series back onto the factors
and grouping predictors into highly correlated groups. Variables in each group are then interpreted as
representing a specific economic force.

25This would be justified by an assumption that prices adjust slowly to underlying inflationary pressures,
perhaps due to a Calvo-style pricing friction.

29



macroeconomic predictors x at time t under the assumption that

xt = Φ(fq,t, fm,t)
′ + ωt.

Table 6 reports the results of using theoretically-motivated variables output growth and

money growth to directly forecast GDP inflation. Such direct forecasts obtain a 1.3% out-of-

sample R2, just a bit less than the 2.1% obtained by PCR or 2.8% obtained by FA in Table

4. But when we instead use output growth and money growth as theory-proxies to extract

predictive factors from the cross section of macroeconomic predictors, we obtain superior

out-of-sample performance with an R2 of 7.6%. This improvement is significant according

to the Diebold-Mariano-West statistic at the 10% level.

We are essentially using the cross section of predictors to “clean” the noise in the theory-

proxies. The resulting forecasts are simple to explain to a policy maker – we forecast to-

morrow’s inflation using today’s output and money growth – because basic macroeconomic

theory says that those variables determine inflation. We have only used the three-pass re-

gression filter to better triangulate the latent output and money growth factors driving the

predictable part of future inflation.

6 Conclusion

This paper has introduced a new econometric technique called the three-pass regression filter

which is effective for forecasting in a many-predictor environment. The key feature of the

3PRF is its ability to selectively identify the subset of factors that is useful for forecasting

a given target variable while discarding factors that are irrelevant for the target but that

may be pervasive among predictors. We prove that 3PRF forecasts converge in probability

to the infeasible best forecast as N and T simultaneously become large. We also derive

the limiting distributions of forecasts and estimated predictive coefficients. We compare our
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method to principal components regressions following Stock and Watson (2002a) as well as

newer forecasting techniques found in Bai and Ng (2008), De Mol, Giannone and Reichlin

(2008) and Doz, Giannone and Reichlin (2012). The 3PRF demonstrates strong forecasting

performance, and is often superior to alternatives, across a variety of simulation specifications

and in empirical applications using macroeconomic and financial data.
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Table 1: The Three-Pass Regression Filter

Pass Description

1. Run time series regression of xi on Z for i = 1, . . . , N ,

xi,t = φ0,i + z′tφi + εit, retain slope estimate φ̂i

2. Run cross section regression of xt on φ̂i for t = 1, . . . , T,

xi,t = φ0,t + φ̂
′
iF t + εit, retain slope estimate F̂ t

3. Run time series regression of yt+1 on predictive factors F̂ t,

yt+1 = β0 + F̂
′
tβ + ηt+1, delivers forecast ŷt+1

Notes: All regressions use OLS.

Table 2: Automatic Proxy-Selection Algorithm

0. Initialize r0 = y.

For k = 1, . . . , L:

1. Define the kth automatic proxy to be rk−1. Stop if k = L; otherwise proceed.

2. Compute the 3PRF for target y using cross section X using statistical proxies 1
through k. Denote the resulting forecast ŷk.

3. Calculate rk = y − ŷk, advance k, and go to step 1.
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Table 3: Simulated Out-of-Sample Forecast Performance

N = T = 100 N = T = 200
ρf ρg a d 3PRF1 PCR5 PCLAR PCLAS 10LAR FA 3PRF1 PCR5 PCLAR PCLAS 10LAR FA

Panel A: Normal Factors
0 0 0 0 28.4 33.5 26.0 24.6 12.6 34.5 38.2 42.0 24.9 34.4 25.6 43.1

0.3 0.9 0.3 0 26.3 31.6 24.1 22.7 11.0 31.2 37.4 41.9 34.9 34.4 25.3 42.2
0.3 0.9 0.3 1 25.2 22.9 22.0 20.3 12.6 23.6 36.8 40.0 34.1 33.7 26.1 40.5
0.3 0.9 0.9 0 18.1 -4.5 13.5 4.3 15.1 -4.7 31.9 -0.3 30.0 27.8 27.1 -0.9
0.3 0.9 0.9 1 18.0 -5.0 12.9 3.7 15.5 -4.2 31.5 -0.9 29.9 27.9 28.2 -1.0
0.9 0.3 0.3 0 33.0 36.0 30.9 29.3 20.6 39.9 41.0 44.8 38.5 38.0 29.1 46.5
0.9 0.3 0.3 1 30.8 26.7 28.8 26.4 21.2 33.1 40.3 42.5 37.6 37.4 29.9 45.1
0.9 0.3 0.9 0 31.7 20.7 29.8 23.5 26.0 21.7 37.6 23.3 37.0 35.3 33.1 23.1
0.9 0.3 0.9 1 30.7 19.4 29.3 22.6 26.9 20.6 36.3 20.7 37.5 34.4 33.3 21.2

Panel B: Moderately Weak Factors
0 0 0 0 21.3 23.5 16.4 15.2 2.0 25.8 34.5 37.6 28.1 27.8 17.4 39.2

0.3 0.9 0.3 0 20.1 20.0 14.4 13.6 1.0 18.7 33.5 36.8 27.8 27.7 17.3 37.7
0.3 0.9 0.3 1 17.7 5.8 11.9 10.0 2.4 6.4 32.1 30.4 26.8 26.7 17.6 31.9
0.3 0.9 0.9 0 9.6 -6.7 1.1 -2.7 5.2 -8.3 24.4 -1.8 20.2 17.6 19.6 -3.0
0.3 0.9 0.9 1 9.4 -7.1 0.7 -3.9 6.4 -7.9 23.6 -2.3 19.7 16.6 20.8 -2.6
0.9 0.3 0.3 0 27.5 24.6 22.0 20.8 11.7 31.7 37.5 39.6 32.1 31.9 21.2 43.0
0.9 0.3 0.3 1 23.7 11.5 18.3 17.1 11.7 18.3 35.6 33.3 30.9 30.3 21.3 38.5
0.9 0.3 0.9 0 27.8 18.9 25.4 20.9 21.8 20.3 33.0 17.2 32.0 30.8 28.6 17.0
0.9 0.3 0.9 1 26.7 17.8 24.8 19.6 21.9 18.8 31.3 15.5 31.8 29.9 28.1 17.6

Panel C: Weak Factors
0 0 0 0 8.4 4.4 2.0 1.9 -14.8 4.4 24.6 24.2 14.1 14.0 2.8 27.4

0.3 0.9 0.3 0 7.7 2.1 1.2 1.2 -14.2 -0.5 23.6 19.9 14.0 13.9 3.5 20.1
0.3 0.9 0.3 1 3.3 -1.2 -1.2 -0.9 -12.0 -3.5 19.7 4.1 12.1 12.1 4.0 4.3
0.3 0.9 0.9 0 -0.9 -7.1 -0.8 -0.8 -11.4 -10.1 10.7 -2.0 2.7 1.6 4.7 -2.7
0.3 0.9 0.9 1 -1.5 -7.4 -7.7 -8.0 -10.6 -9.7 10.1 -2.4 2.5 0.6 5.9 -3.0
0.9 0.3 0.3 0 17.6 8.8 9.5 8.9 -3.1 15.7 29.0 25.0 18.8 18.7 7.5 32.4
0.9 0.3 0.3 1 11.6 2.6 5.9 5.3 -3.0 4.9 24.6 10.0 17.0 16.6 8.1 15.3
0.9 0.3 0.9 0 24.0 17.7 21.9 18.2 15.7 18.2 26.5 13.3 26.4 25.3 22.5 13.4
0.9 0.3 0.9 1 22.2 16.8 21.4 16.6 15.9 17.4 24.9 11.7 25.3 23.7 21.5 13.6

Panel D: Moderately Weak and Non-pervasive Factors
0 0 0 0 3.6 4.0 3.8 2.9 -9.2 6.0 18.0 26.3 20.8 20.6 12.3 30.5

0.3 0.9 0.3 0 3.0 0.2 2.4 1.9 -8.9 -1.0 18.0 22.5 20.0 20.0 12.6 24.8
0.3 0.9 0.3 1 0.5 -4.0 -2.1 -2.1 -6.9 -6.1 15.6 4.4 17.6 17.2 14.3 6.7
0.3 0.9 0.9 0 -1.9 -8.1 -6.8 -6.8 -3.6 -10.8 9.7 -3.1 8.0 5.5 16.2 -3.6
0.3 0.9 0.9 1 -2.3 -8.2 -8.1 -7.6 -0.1 -10.3 9.2 -3.3 6.3 3.6 18.0 -3.7
0.9 0.3 0.3 0 13.0 7.2 10.3 9.2 0.4 14.5 23.4 27.3 23.7 23.6 15.7 34.9
0.9 0.3 0.3 1 8.4 -1.3 5.2 3.7 2.6 1.7 20.6 11.9 20.5 20.4 17.2 18.7
0.9 0.3 0.9 0 23.2 13.7 21.1 15.1 17.1 15.1 25.7 8.4 27.1 25.4 25.7 10.5
0.9 0.3 0.9 1 21.7 12.9 20.0 14.0 18.0 13.2 24.0 7.9 25.7 23.5 24.7 9.6

Notes: Out-of-sample percentage R2 from recursive out-of-sample forecasts begun at the middle of the time
series. Infeasible best is 50%. Serial correlation in factors is governed by ρf and ρg, while a and d govern serial
and cross section correlation in predictor idiosyncrasies. Factor strength marked by the median percentage of
predictor variation explained by factors: 30% for normal factors, 20% for moderately weak factors and 10%
for weak. For simulations labeled “Non-pervasive Factors,” half of the predictors have a loading of zero on
the relevant factor, otherwise all predictors have non-zero loadings on all factors. We bold the best median
performer for each specification when it outperforms the historical mean. The procedures are described in
the text.

35



Table 4: Out-of-Sample Macroeconomic Forecasting

3PRF1 PCR1 PCLAR PCLAS 10LAR FA1

GDP 30.12 35.18∗ 29.70 29.51 26.38 20.11
Consumption 23.20∗† 7.06 9.12 7.32 −14.85 2.72
Investment 38.88∗ 37.37 36.81 36.30 24.01 34.35
Exports 16.75∗ 13.25 −11.58 −9.42 −61.36 16.44
Imports 37.18∗ 36.50 18.46 16.93 22.77 36.58
Industrial Production 16.56∗† 8.92 5.67 5.71 11.04 12.04
Capacity Utilization 54.32 54.79 53.77 54.85 64.69∗† 55.58
Total Hours 53.81∗ 50.47 48.58 47.39 39.56 42.53
Total Employment 48.84∗ 47.27 38.14 37.16 18.91 41.73
Average Hours 20.12∗ 10.12 18.52 13.89 17.55 15.84
Housing Starts 26.97 −0.14 31.54 29.66 46.89∗† 0.13
GDP Inflation 0.64 2.05 −0.94 1.38 −5.89 2.80∗

PCE Inflation −1.29 −3.73 10.60 9.82 12.22∗ −2.50

Notes: Quarterly data from Stock and Watson (2012) for the sample 1959:I-2009:IV. Out-of-sample R2 of one
quarter ahead forecasts, in percentage. Recursive procedure starts out-of-sample forecasts halfway through
the sample in 1985. 3PRF1 uses a single automatic proxy. PCR1 uses the first PC to forecast. PCLAR and
PCLAS use LAR and LASSO, respectively, to select a predictor subset from which principal components are
extracted and used to forecast following Bai and Ng (2008). 10LAR uses LAR to forecast using the best five
predictors following De Mol, Giannone and Reichlin (2008). ∗ denotes the best-performing procedure and †
denotes statistical significance at the 10% level of the best-performing procedure relative to the second-best
using the Diebold and Mariano (1995) and West (1996) statistic.

Table 5: Out-of-Sample Market Return Forecasts

3PRF1 3PRF2 3PRF−IC PC1 PC2 PC−IC 10LAR FA1 FA2 FA−IC

Return R2 27.63 36.34∗† 31.15 −10.45 −8.89 27.00 13.28 −10.08 −11.76 21.68
# of factors 1.36 4.58 4.58

Notes: R2 in percentage. Annual data 1945–2010, from CRSP. Twenty-five size/book-to-market sorted
portfolios of dividend-paying stocks. One year ahead, recursive out-of-sample forecasts of the aggregate
market returns begin in 1985. PC−L denotes the forecast using L principal components. 3PRFL denotes
the L-automatic-proxy 3PRF forecast. PC-IC and FA−IC uses the number of PCs are chosen by Bai and
Ng’s (2002) ICp2. 3PRF-IC use the BIC provided earlier in the paper. ∗ denotes the best-performing
procedure of any group (3PRF, PCR, 10LAR or FA) and † denotes statistical significance at the 10% level
of the best-performing procedure relative to the best member of the remaining groups, using the Diebold
and Mariano (1995) and West (1996) statistic. The “# of factors” displays the average number of factors
chosen across the training samples using the BICs.
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Table 6: Out-of-Sample GDP Inflation Forecasts Using Theory Proxies

Theory Proxies Theory Direct Theory 3PRF
GDP Growth, M1 Growth 1.28 7.61†

Notes: Last two columns report R2, in percentage. Cross sections and out-of-sample periods identical to
Table 4 for GDP Inflation. † denotes statistical significance at the 10% level relative to the best performing
forecast in Table 4 using the Diebold and Mariano (1995) and West (1996) statistic.
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A Appendix

A.1 Overview

This appendix includes proofs of theorems in the main text. It is designed to be self-contained so that
the reader need not reference results in appendices of other papers or translate those results to the current
setting. We include auxiliary lemmas upon which our primary theorems are based. All of our theorems are
novel results. They build upon certain parts of our auxiliary convergence lemmas that have been proved in
the literature on large sample properties of principal components. The purpose of this overview is to outline
where our lemmas draw on earlier literature and where we contribute new results. We also point to analogies
between our asymptotic theory and that in the PCR literature.

Of Lemma 1, parts 8, 9, 13 and 15 are new whereas the others essentially appear in Stock and Watson
(2002a). Lemma 2 collects matrices whose elements are sums addressed in Lemma 1. Lemmas 3, 4 and 5
and Theorems 1-6 are new in that they i) rely on the fact that the 3PRF may be written in closed form,
ii) use 3PRF’s ability to estimate only the relevant subset of factors, and iii) rely on factor proxies, which
do not apply to PCR. Lemmas 3, 4 and 5 follow analogous results for PCR in Bai and Ng (2003) and Stock
and Watson (2002a) for part of their development. Theorem 2 is new in providing the limit of the resulting
projection coefficient on the ith predictor, although one might be able to adapt results in Bai and Ng (2006)
to obtain a similar result. Lemma 6 follows Bai and Ng (2006) except that the limit of our estimated
“idiosyncracies” can include a factor structure (induced by the existence of irrelevant factors). Lemmas 7
and 8 are similar to those in Bai and Ng (2006). Theorem 3 is new as it provides the asymptotic distribution
of the projection coefficient on the ith predictor. Theorems 4 and 5 are similar to Bai and Ng’s (2006) main
result except that we do not require a relative rate condition on N and T . Lemma 9 and Theorem 6 are
similar to Bai and Ng (2006), though we cannot provide a consistent estimator of the asymptotic variance

of F̂ t due to the fact that our estimated predictor idiosyncracies can include a factor structure. Theorem 7
is a new but basic induction result, and Proposition 8 is new.

Finally, subsection A.7 is provided to establish the necessity of the relevant proxy assumption, particularly
that we need as many relevant proxies as there are relevant factors. We show that it is not generally possible
to achieve consistent forecasts using a single 3PRF predictive index when there are multiple relevant factors.
In fact, this only obtains in a knife-edge case wherein the relevant factors’ time series variances and relevant
loadings’ cross-sectional variances are all equal. Absent this condition, consistency requires as many relevant
proxies as there are relevant factors.

A.2 Assumptions

We restate the assumptions here so that the online appendix is self-contained and can be read without
referring to assumptions in the main text.

Assumption 1 (Factor Structure). The data are generated by the following:

xt = φ0 + ΦF t + εt yt+1 = β0 + β′F t + ηt+1 zt = λ0 + ΛF t + ωt

X = ιφ′0 + FΦ′ + ε y = ιβ0 + Fβ + η Z = ιλ′0 + FΛ′ + ω

where h > 0, F t = (f ′t, g
′
t)
′, Φ = (Φf ,Φg), Λ = (Λf ,Λg), and β = (β′f ,0

′)′ with |βf | > 0. Kf > 0
is the dimension of vector f t, Kg ≥ 0 is the dimension of vector gt, L > 0 is the dimension of vector zt
(0 < L < min(N,T )), and K = Kf +Kg.

Assumption 2 (Factors, Loadings and Residuals). Let M <∞. For any i, s, t

1. E‖F t‖4 < M , T−1
∑T
s=1 F s

p−−−−→
T→∞

µ and T−1F ′JTF
p−−−−→

T→∞
∆F
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2. E‖φi‖4 ≤M , N−1
∑N
j=1 φj

p−−−−→
T→∞

φ̄, N−1Φ′JNΦ
p−−−−→

N→∞
P and N−1Φ′JNφ0

p−−−−→
N→∞

P 1
26

3. E(εit) = 0,E|εit|8 ≤M

4. E (ωt) = 0,E||ωt||4 ≤M,T−1/2
∑T
s=1 ωs = Op(1) and T−1ω′JTω

p−−−−→
N→∞

∆ω

5. Et(ηt+1) = E(ηt+1|yt, Ft, yt−1, Ft−1, ...) = 0, E(η4
t+1) ≤M , and ηt+1 is independent of φi(m) and εi,t.

Assumption 3 (Dependence). Let x(m) denote the mth element of x. For M <∞ and any i, j, t, s,m1,m2

1. E(εitεjs) = σij,ts, |σij,ts| ≤ σ̄ij and |σij,ts| ≤ τts, and

(a) N−1
∑N
i,j=1 σ̄ij ≤M

(b) T−1
∑T
t,s=1 τts ≤M

(c) N−1
∑
i,s |σii,ts| ≤M

(d) N−1T−1
∑
i,j,t,s |σij,ts| ≤M

2. E
∣∣∣N−1/2T−1/2

∑T
s=1

∑N
i=1 [εisεit − E (εisεit)]

∣∣∣2 ≤M
3. E

∣∣∣T−1/2
∑T
t=1 Ft(m1)ωt(m2)

∣∣∣2 ≤M
4. E

∣∣∣T−1/2
∑T
t=1 ωt(m1)εit

∣∣∣2 ≤M .

Assumption 4 (Central Limit Theorems). For any i, t

1. N−1/2
∑N
i=1 φiεit

d−→ N (0,ΓΦε), where ΓΦε = plimN→∞N
−1
∑N
i,j=1 E

[
φiφ

′
jεitεjt

]
2. T−1/2

∑T
t=1 F tηt+1

d−→ N (0,ΓFη), where ΓFη = plimT→∞T
−1
∑T
t=1 E

[
η2
t+1F tF

′
t

]
> 0

3. T−1/2
∑T
t=1 F tεit

d−→ N (0,ΓFε,i), where ΓFε,i = plimT→∞T
−1
∑T
t,s=1 E

[
F tF

′
sεitεis

]
> 0.

Assumption 5 (Normalization). P = I, P 1 = 0 and ∆F is diagonal, positive definite, and each diagonal
element is unique.

Assumption 6 (Relevant Proxies). Λ = [ Λf 0 ] and Λf is nonsingular.

26‖φi‖ ≤M can replace E‖φi‖4 ≤M if φi is non-stochastic.
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A.3 Auxiliary Lemmas

The following lemma collects basic results for various sums of products of the random variables appearing
in our factor system. It repeatedly uses Cauchy-Schwarz and follows arguments appearing in Bai and Ng
(2002), Stock and Watson (2002a) and Bai (2003).

Lemma 1. Let Assumptions 1-4 hold. Then for all s, t, i,m,m1,m2

1. E
∣∣∣(NT )−1/2

∑
i,s Fs(m) [εisεit − σii,st]

∣∣∣2 ≤M
2. E

∣∣∣(NT )−1/2
∑
i,s ωs(m) [εisεit − σii,st]

∣∣∣2 ≤M

3. N−1/2T−1/2
∑
i,t εit = Op(1)

N−1/2
∑
i εit = Op(1),

T−1/2
∑
t εit = Op(1)

4. T−1/2
∑
t ηt+1 = Op(1),

5. T−1/2
∑
t εitηt+1 = Op(1)

6. N−1/2T−1/2
∑
i,t εitηt+1 = Op(1)

7. N−1T−1/2
∑
i,t φi(m1)εitFt(m2) = Op(1)

8. N−1T−1/2
∑
i,t φi(m1)εitωt(m2) = Op(1)

9. N−1/2T−1/2
∑
i,t φi(m)εitηt+1 = Op(1)

10. N−1T−1/2
∑
i,s εisεit = Op(δ

−1
NT )

11. N−1T−3/2
∑
i,s,t εisεitηt+1 = Op(δ

−1
NT )

12. N−1T−1/2
∑
i,s Fs(m)εisεit = Op(δ

−1
NT )

13. N−1T−1/2
∑
i,s ωs(m)εisεit = Op(δ

−1
NT )

14. N−1T−1
∑
i,s,t Fs(m)εisεitηt+1 = Op(1)

15. N−1T−1
∑
i,s,t ωs(m)εisεitηt+1 = Op(1)

The stochastic order is understood to hold as N,T →∞ and δNT ≡ min(
√
N,
√
T ).

Proof. Item 1: Note that

E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

Fs(m) [εisεit − σii,st]

∣∣∣∣∣∣
2

= E

(NT )−1
∑
i,j,s,u

Fs(m)Fu(m) [εisεit − σii,st] [εjuεjt − σjj,ut]


≤ max

s,u
E|Fs(m)Fu(m)|E

(NT )−1
∑
i,j,s,u

[εisεit − σii,st] [εjuεjt − σjj,ut]


≤ max

s,u
E|Fs(m)|E|Fu(m)|E

∣∣∣∣∣∣(NT )−1/2
∑
i,s

[εisεit − σii,st]

∣∣∣∣∣∣
2

<∞

by Assumptions 2.1 and 3.2. The same argument applies to Item 2 using Assumptions 2.4 and 3.1

Item 3: The first part follows from

E
∣∣∣N−1/2T−1/2

∑
i,t εit

∣∣∣2 = N−1T−1
∑
i,j,t,s σij,ts ≤ N−1T−1

∑
i,j,t,s |σij,ts| ≤ M by Assumption 3.1. The

second and third parts of Item 3 follow similar rationale.

Item 4 follows from E
∣∣T−1/2

∑
t ηt+1

∣∣2 = T−1
∑
t E[η2

t+1] = Op(1) by Assumption 2.5.

Item 5: Note that E
∣∣T−1/2

∑
t εitηt+1

∣∣2 = T−1
∑
t σii,ttE[η2

t+1] ≤ T−1
∑
t E[η2

t+1]σ̄ii = Op(1) by Assump-
tion 2.5 and 3.1.

Item 6: Note that E
∣∣∣N−1/2T−1/2

∑
i,t εitηt+1

∣∣∣2 = N−1T−1
∑
i,j,t σij,ttE[η2

t+1] ≤ T−1
∑
t E[η2

t+1]N−1
∑
i,j σ̄ij =

Op(1) by Assumption 2.5 and 3.1.

Item 7 is bounded by
(
N−1

∑
i φi(m1)2

)1/2 (
N−1

∑
i

[
T−1/2

∑
t εitFt(m2)

]2)1/2

= Op(1) by Assump-

tions 2.2 and 4.3. Item 8 follows the same rationale using Assumptions 2.2 3.4.
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Item 9: Note that E
∣∣∣N−1/2T−1/2

∑
i,t φi(m)εitηt+1

∣∣∣2 = N−1T−1
∑
i,j,t E

[
φi(m)φj(m)εitεjtη

2
t+1

]
since

E [ηt+1ηs+1] = 0 for t 6= s, which is in turn equal to T−1
∑
t E
[
η2
t+1

]
E
[(
N−1/2

∑
i φi(m)εit

)2]
, by Assump-

tion 2.5. That this expression is Op(1) follows from Assumptions 2.5 and 4.1.

Item 10: N−1T−1/2
∑
i,s[εisεit−σii,st] +T−1/2N−1

∑
i,s σii,st = Op(N

−1/2) +Op(T
−1/2) by Assumption

3.2 and 3.1.

Item 11: By Item 10 and Assumption 2.5,

N−1T−3/2
∑
i,s,t εisεitηt+1 ≤

(
T−1

∑
t η

2
t+1

)1/2(
T−1

∑
t

[
N−1T−1/2

∑
i,s εisεit

]2)1/2

= Op(δ
−1
NT ).

Item 12: First, we have

N−1T−1/2
∑
i,s Fs(m)εisεit = N−1/2

(
N−1/2T−1/2

∑
i,s Fs(m)[εisεit − σii,st]

)
+T−1/2

(
N−1

∑
i,s Fs(m)σii,st

)
.

By Lemma Item 1 the first term isOp(N
−1/2). Because E

∣∣∣N−1
∑
i,s Fs(m)σii,st

∣∣∣ ≤ N−1 maxs E|Fs(m)|
∑
i,s |σii,st| =

Op(1) by Assumption 3.1, the second term is Op(T
−1/2). The same argument applies to Item 13 using Item

2.

Item 14: By Assumption 4.3 and Item 5,

N−1T−1
∑
i,s,t Fs(m)εisεitηt+1 ≤

(
N−1

∑
i

[
T−1/2

∑
t εitηt+1

]2)1/2 (
N−1

∑
i

[
T−1/2

∑
s Fs(m)εis

]2)1/2

=

Op(1). The same argument applies to Item 15 using Assumption 3.4 and Item 5.

The following result builds on the previous lemma. It identifies finite-dimensional matrices that appear
in the expression for the 3PRF, and then looks to find the stochastic order of any generic element of the
matrix.

Lemma 2. Let Assumptions 1-4 hold. Then

1. T−1/2F ′JTω = Op (1)

2. T−1/2F ′JTη = Op (1)

3. T−1/2ε′JTη = Op (1)

4. N−1/2ε′tJNΦ = Op (1)

5. N−1T−1Φ′JNε
′JTF = Op(δ

−1
NT )

6. N−1T−1/2Φ′JNε
′JTω = Op(1)

7. N−1/2T−1/2ΦJNε
′JTη = Op (1)

8. N−1T−3/2F ′JTεJNε
′JTF = Op

(
δ−1
NT

)
9. N−1T−3/2ω′JTεJNε

′JTF = Op

(
δ−1
NT

)
10. N−1T−3/2ω′JTεJNε

′JTω = Op

(
δ−1
NT

)
11. N−1T−1/2F ′JTεJNεt = Op

(
δ−1
NT

)
12. N−1T−1/2ω′JTεJNεt = Op

(
δ−1
NT

)
13. N−1T−3/2η′JTεJNε

′JTF = Op

(
δ−1
NT

)
14. N−1T−3/2η′JTεJNε

′JTω = Op(δ
−1
NT )

The stochastic order is understood to hold as N,T → ∞, stochastic orders of matrices are understood to
apply to each entry, and δNT ≡ min(

√
N,
√
T ).

Proof. Item 1: T−1/2F ′JTω = T−1/2
∑
t F tω

′
t − (T−1

∑
t F t)(T

−1/2
∑
t ω
′
t) = Op(1) by Assumptions 2.1,

2.4 and 3.3.

Item 2: T−1/2F ′JTη = T−1/2
∑
t F tηt+1 − (T−1

∑
t F t)(T

−1/2
∑
t ηt+1) = Op(1) by Lemma 1.4 and

Assumptions 2.1 and 4.2.

Item 3: Follows directly from Lemma 1.5 and 1.6 and Assumption 2.3.

Item 4 has mth element N−1/2
∑
i εitφi(m) − (N−1/2

∑
i εit)(N

−1
∑
i φi(m)) = Op(1) by Assumptions

2.2, 2.3 4.1 and Lemma 1.3.
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Item 5 is a K ×K matrix with generic (m1,m2) element27

N−1T−1
∑
i,t

φi(m1)Ft(m2)εit −N−2T−1
∑
i,j,t

φi(m1)Ft(m2)εjt

−N−1T−2
∑
j,s,t

Fs(m2)φj(m1)εjt +N−2T−2
∑
i,j,s,t

Fs(m2)φi(m1)εjt = 5.I− 5.II− 5.III + 5.IV.

5.I = Op
(
T−1/2

)
by Lemma 1.7.

5.II = Op(T
−1/2) sinceN−1

∑
i φi(m1) = Op(1) by Assumption 2.2 and N−1

∑
j

(
T−1/2

∑
t Ft(m2)εjt

)
=

Op(1) by Assumption 4.3.

5.III = Op(N
−1/2) since T−1

∑
s Fs(m2) = Op(1) by Assumption 2.1 and T−1

∑
t

(
N−1/2

∑
j φj(m1)εjt

)
=

Op(1) by Assumption 4.1. For the following items in this lemma’s proof we use the argument here and in
Item 5.II without further elaboration except to change the referenced assumption or lemma items.

5.IV = Op
(
T−1/2N−1/2

)
by Assumption 2.1, 2.2 and Lemma 1.3.

Summing these terms, Item 5 is Op(δ
−1
NT ).

Item 6 is a K × L matrix with generic (m1,m2) element

N−1T−1/2
∑
i,t

φi(m1)ωt(m2)εit −N−2T−1/2
∑
i,j,t

φi(m1)ωt(m2)εjt

−N−1T−3/2
∑
j,s,t

ωs(m2)φj(m1)εjt +N−2T−3/2
∑
i,j,s,t

ωs(m2)φi(m1)εjt = 6.I− 6.II− 6.III + 6.IV.

6.I = Op (1) by Lemma 1.8.

6.II = Op(1) by Assumptions 2.2 and 3.4.

6.III = Op(N
−1/2) by Assumptions 2.4 and 4.1.

6.IV = Op
(
T−1/2N−1/2

)
by Assumption 2.2, 2.4 and Lemma 1.3.

Summing these terms, Item 6 is Op(1).

Item 7 has generic mth element

N−1/2T−1/2
∑
i,t

φi(m)εitηt+1 −N−1/2T−3/2
∑
i,s,t

φi(m)εitηs+h

−N−3/2T−1/2
∑
i,j,t

φi(m)εjtηt+1 +N−3/2T−3/2
∑
i,j,s,t

φi(m)εjtηs+h = 7.I− 7.II− 7.III + 7.IV.

7.I = Op(1) by Lemma 1.9.

7.II = Op(1) by Assumption 4.1 and Lemma 1.4.

7.III = Op(1) by Assumption 2.2 and Lemma 1.6.

7.IV = Op(T
−1/2) by Assumption 2.2 and Lemmas 1.3 and 1.4.

Summing these terms, Item 7 is Op(1).

27The web appendix rearranges this and following items to cleanly show the terms.
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Item 8 is K ×K with generic (m1,m2) element

N−1T−3/2
∑
i,s,t

Fs(m1)εisεitFt(m2)−N−1T−5/2
∑
i,s,t,u

Fs(m1)εisεitFu(m2)

−N−1T−5/2
∑
i,s,t,u

Fs(m1)εitεiuFu(m2) +N−1T−7/2
∑

i,s,t,u,v

Fs(m1)εitεiuFv(m2)

+N−2T−3/2
∑
i,j,s,t

Fs(m1)εisεjtFt(m2) +N−2T−5/2
∑

i,j,s,t,u

Fs(m1)εisεjtFu(m2)

+N−2T−5/2
∑

i,j,s,t,u

Fs(m1)εitεjuFu(m2)−N−2T−7/2
∑

i,j,s,t,u,v

Fs(m1)εitεjuFv(m2) = 8.I− · · · − 8.VIII.

8.I = T−1/2
(
N−1

∑
i,s,t

(
T−1/2

∑
s Fs(m1)εis

) (
T−1/2

∑
t Ft(m2)εit

))
= Op(T

−1/2) by Assumption 4.3.

8.II = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.12. Item 8.III is identical.

8.IV = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.10.

8.V = Op(T
−1/2) by Assumption 4.3.

8.VI = Op(N
−1/2T−1/2) by Assumptions 2.1 and 4.3 and Lemma 1.3. Item 8.VII is identical.

8.VIII = Op(N
−1T−1/2) by Assumption 2.1 and Lemma 1.3.

Summing these terms, we have Item 8 is Op

(
δ−1
NT

)
.

Items 9 and 10 follow the same argument as Item 8 but replace where appropriate ws(m) for Fs(m),
Lemma 1.13 for 1.12 and Assumption 3.4 for 4.3. Substituting this way implies Items 9 and 10 are no larger
than Op

(
δ−1
NT

)
.

Item 11 has generic mth element given by

N−1T−1/2
∑
i,s

Fs(m)εisεit −N−2T−1/2
∑
i,j,s

Fs(m)εisεjt

−N−1T−3/2
∑
i,s,u

Fs(m)εiuεit +N−2T−3/2
∑
i,j,s,u

Fs(m)εiuεjt = 11.I− 11.II− 11.III + 11.IV.

11.I = Op(δ
−1
NT ) by Lemma 1.12.

11.I = Op(N
−1/2) by Assumption 4.3 and Lemma 1.3.

11.III = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.10.

11.IV = Op(N
−1) by Assumption 2.1 and Lemma 1.3.

Summing these terms, we have Item 11 is Op

(
δ−1
NT

)
.

Item 12 follows nearly the same argument as Item 11, but replaces ws(m) for Fs(m) and Assumption 3.4
for 4.3. Substituting this way implies that Item 12 is Op(δ

−1
NT ).

Item 13 has mth element

N−1T−3/2
∑
i,s,t

Fs(m)εisεitηt+1 −N−1T−3/2
∑
i,s,t,u

Fs(m)εisεitηu+h

N−1T−5/2
∑
i,s,t,u

Fs(m)εitεiuηu+h +N−1T−7/2
∑

i,s,t,u,v

Fs(m)εitεiuηv+h

−N−2T−3/2
∑
i,j,s,t

Fs(m)εisεjtηt+1 +N−2T−5/2
∑

i,j,s,t,u

Fs(m)εisεjtηu+h

+N−2T−5/2
∑

i,j,s,t,u

Fs(m)εitεjuηu+h −N−2T−7/2
∑

i,j,s,t,u,v

Fs(m)εitεjuηv+h = 13.I− · · · − 13.VIII.

43



13.I = Op(T
−1/2) by Lemma 1.14.

13.II = Op(T
−1/2δ−1

NT ) by Lemmas 1.12 and 1.4.

13.III = Op(δ
−1
NT ) by Assumption 2.1 and Lemma 1.11.

13.IV = Op(T
−1/2δ−1

NT ) by Assumption 2.1 and Lemmas 1.3 and 1.4.

13.V = Op(N
−1/2T−1/2) by Assumption 4.3 and Lemma 1.6.

13.VI = Op(N
−1/2T−1) by Assumption 4.3 and Lemmas 1.3 and 1.4.

13.VII = Op(N
−1T−1/2) by Assumption 2.1 and Lemmas 1.3 and 1.6.

13.VIII = Op(N
−1T−1/2) by Assumption 2.1 and Lemmas 1.3 and 1.4.

Summing these terms, Item 13 is Op(δ
−1
NT ).

Item 14 follows the same argument as Item 13 replacing Lemma 1.15 for 1.14, Lemma 1.13 for 1.12 and
Assumption 3.4 for 4.3. Substituting this way implies that Item 14 is Op(δ

−1
NT ).

A.4 Probability Limits and Forecast Consistency

This lemma finds the probability limit for our factor estimator F̂ . It expands out this expression to find
terms involving X,Z,y that can then be expressed using Assumption 1 as matrices appearing in Lemma 2.

Lemma 3. Let Assumptions 1-4 hold. Then the probability limits of Φ̂ and F̂ t are

Φ̂
p−−−−→

T→∞

(
Λ∆FΛ′ + ∆ω

)−1
Λ∆FΦ′

and
F̂ t

p−−−−−→
T,N→∞

(
Λ∆FΛ′ + ∆ω

) (
Λ∆FP∆FΛ′

)−1
(Λ∆FP 1 + Λ∆FPF t) .

Proof. From Equation 2, for any t the second stage 3PRF regression coefficient is

F̂ t = T−1Z ′JTZ
(
N−1T−2Z ′JTXJNX

′JTZ
)−1

N−1T−1Z ′JTXJNxt

= F̂AF̂
−1

B F̂C,t.

We handle each of these three terms individually.

F̂A = T−1Z ′JTZ

= Λ
(
T−1F ′JTF

)
Λ′ + Λ

(
T−1F ′JTω

)
+
(
T−1ω′JTF

)
Λ′ + T−1ω′JTω

p−−−−−→
T,N→∞

Λ∆FΛ′ + ∆ω.
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F̂B = N−1T−2Z ′JTXJNX
′JTZ

= Λ
(
T−1F ′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTF

)
Λ′ + Λ

(
T−1F ′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTω

)
+Λ

(
T−1F ′JTF

) (
N−1T−1Φ′JNεJTF

)
Λ′ + Λ

(
T−1F ′JTF

) (
N−1T−1Φ′JNεJTω

)
+Λ

(
N−1T−1F ′JTεJNΦ

) (
T−1F ′JTF

)
Λ′ + Λ

(
N−1T−1F ′JTεJNΦ

) (
T−1F ′JTω

)
+Λ

(
N−1T−2F ′JTεJNε

′JTF
)
Λ′ + Λ

(
N−1T−2F ′JTεJNε

′JTω
)

+
(
T−1ω′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTF

)
Λ′ +

(
T−1ω′JTF

) (
N−1Φ′JNΦ

) (
T−1F ′JTω

)
+
(
T−1ω′JTF

) (
N−1T−1Φ′JNεJTF

)
Λ′ +

(
T−1ω′JTF

) (
N−1T−1Φ′JNεJTω

)
+
(
N−1T−1ω′JTεJNΦ

) (
T−1F ′JTF

)
Λ′ +

(
N−1T−1ω′JTεJNΦ

) (
T−1F ′JTω

)
+
(
N−1T−2ω′JTεJNεJTF

)
Λ′ +

(
N−1T−2ω′JTεJNεJTω

)
p−−−−−→

T,N→∞
Λ∆FP∆FΛ′.

F̂C,t = N−1T−1Z ′JTXJNxt (A1)

= Λ
(
T−1F ′JTF

) (
N−1Φ′JNφ0

)
+ Λ

(
T−1F ′JTF

) (
N−1Φ′JNΦ

)
F t + Λ

(
T−1F ′JTF

) (
N−1Φ′JNεt

)
+Λ

(
N−1T−1F ′JTεJNφ0

)
+ Λ

(
N−1T−1F ′JTεJNΦ

)
F t + Λ

(
N−1T−1F ′JTεJNεt

)
+
(
T−1ω′JTF

) (
N−1Φ′JNφ0

)
+
(
T−1ω′JTF

) (
N−1Φ′JNΦ

)
F t +

(
T−1ω′JTF

) (
N−1Φ′JNεt

)
+
(
N−1T−1ω′JTεJNφ0

)
+
(
N−1T−1ω′JTεJNΦ

)
F t +

(
N−1T−1ω′JTεJNεt

)
p−−−−−→

T,N→∞
Λ∆FP 1 + Λ∆FPF t.

Each convergence result follows from Lemma 2 and Assumptions 1-4. The final result is obtained via the
continuous mapping theorem. The result for Φ̂ proceeds similarly, using the result above for F̂A and the
fact that plimN,T→∞T

−1Z ′JTX = Λ∆FΦ′ using Lemma 2.

This lemma finds the probability limit for our factor estimator β̂. It expands out this expression to find
terms involving X,Z,y that can then be expressed using Assumption 1 as matrices appearing in Lemma 2.

Lemma 4. Let Assumptions 1-4 hold. Then the probability limit of estimated third stage predictive coeffi-
cients β̂ is

β̂
p−−−−−→

T,N→∞

(
Λ∆FΛ′ + ∆ω

)−1
Λ∆FP∆FΛ′

(
Λ∆FP∆FP∆FΛ′

)−1
Λ∆FP∆Fβ. (A2)

Proof. From Equation 3, the third stage 3PRF regression coefficient is

β̂ =
(
T−1Z ′JTZ

)−1
N−1T−2Z ′JTXJNX

′JTZ

×
(
N−2T−3Z ′JTXJNX

′JTXJNX
′JTZ

)−1
N−1T−2Z ′JTXJNX

′JTy

= β̂
−1

1 β̂2β̂
−1

3 β̂4

We handle each of these three terms individually. Note that β̂1 = F̂A and β̂2 = F̂B and these probability

limits are established in Lemma 3. The expressions for β̂3 and β̂4 are more tedious and require an additional
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lemma (that holds given Assumptions 1-4) which we place in the web appendix. Therefore we have that

β̂3 = N−2T−3Z ′JTXJNX
′JTXJNX

′JTZ
p−−−−−→

T,N→∞
Λ∆FP∆FP∆FΛ′

and

β̂4 = N−1T−2Z ′JTXJNX
′JTy

p−−−−−→
T,N→∞

Λ∆FP∆Fβ.

Each convergence result follows from Lemma 2 and Assumptions 1-4. The final result is obtained via the
continuous mapping theorem.

This lemma finds the probability limit for our factor estimator ŷ, but is immediate from the two preceding
proofs.

Lemma 5. Let Assumptions 1, 2 and 3 hold. Then the three pass regression filter forecast satisfies

ŷt+1
p−−−−−→

T,N→∞
β0 + µ′β + (F t − µ)′P∆FΛ′

[
Λ∆FP∆FP∆FΛ′

]−1
Λ∆FP∆Fβ. (A3)

Proof. Immediate from Equation 1 and Lemmas 3 and 4.

This theorem uses the probability limit just found for ŷ and adds the assumption that the proxies are
relevant. This allows certain off-diagonal matrices to go to zero, ensuring consistency.

Theorem 1. Let Assumptions 1-6 hold. The three-pass regression filter forecast is consistent for the infeasible

best forecast, ŷt+1
p−−−−−→

T,N→∞
β0 + F ′tβ.

Proof. Given Assumptions 1, 2 and 3, Lemma 5 holds and we can therefore manipulate (A3). Partition P
and ∆F as

P =

[
P1 P12

P ′12 P2

]
, ∆F =

[
∆F,1 ∆F,12

∆′F,12 ∆F,2

]
such that the block dimensions of P and ∆F coincide. By Assumption 5, the off-diagonal blocks, P12

and ∆F,12, are zero. As a result, the first diagonal block of the term ∆FP∆FP∆F in Equation A3 is
∆F,1P1∆F,1P1∆F,1. By Assumption 6, pre- and post-multiplying by Λ = [Λf ,0] reduces the term in
square brackets to Λf∆F,1P1∆F,1P1∆F,1Λf . Similarly, P∆FΛ′ = [ΛfP1∆F,1,0]

′
and Λ∆FP∆F =

[Λf∆F,1P1∆F,1,0]. By Assumption 6, Λf is invertible and therefore the expression for ŷt+1 reduces to
β0 + F ′tβ.28

Corollary 1. Let Assumptions 1-5 hold. Additionally, assume that there is only one relevant factor. Then
the target-proxy three pass regression filter forecaster is consistent for the infeasible best forecast.

Proof. It follows directly from previous result by noting that the loading of y on F is β = (β1,0
′)′ with

β1 6= 0. Therefore the target satisfies the condition of Assumption 6.

We consider a generic element of the projection coefficient α and obtain its probability limit, which boils
down to performing matrix algebra.

Theorem 2. Let α̂i denote the ith element of α̂, and let Assumptions 1-6 hold. Then for any i,

Nα̂i
p−−−−−→

T,N→∞

(
φi − φ̄

)′
β.

28This proof shows that Assumption 5 is stronger than is necessary. All we require is that P and ∆F are
block diagonal.
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Proof. Rewrite α̂i = Siα̂, where Si is the (1×N) selector vector with ith element equal to one and remaining
elements zero. Expanding the expression for α̂ in Equation 4, the first term in Siα̂ is the (1 ×K) matrix
SiJNΦ, which has probability limit

(
φi − φ̄

)
as N,T → ∞. It then follows directly from previous results

that
Nα̂i

p−−−−−→
T,N→∞

(
φi − φ̄

)′
∆FΛ′

(
Λ∆FP∆FP∆FΛ′

)−1
Λ∆FP∆Fβ.

Under Assumptions 5 and 6, this reduces to
(
φi − φ̄

)′
β.

The following lemma finds the probability limit of the predictors’ “residuals” that are unexplained by
the factor estimator F̂ in the limit. Notice that ε̂ is consistent for the true idiosyncratic errors (for which
cross-sectional dependence is limited by Assumption 3) and a linear combination of the irrelevant factors g
(which can be pervasive across predictors. This fact complicates the construction of a consistent estimator

for the asymptotic variance of F̂ t.

Lemma 6. Define ε̂ = X − ιφ̂0 − F̂ Φ̂
′
, where φ̂0 = T−1

∑
t xt − Φ̂(T−1

∑
t F̂ t). Under Assumptions 1-6,

F̂ Φ̂
′ p−−−−−→
T,N→∞

fΦ′f and ε̂
p−−−−−→

T,N→∞
ε+ gΦ′g.

Proof. Let Sk be a K ×K selector matrix that has ones in the first Kf main diagonal positions and zeros
elsewhere. The fact that

F̂ Φ̂
′ p−−−−−→
T,N→∞

(
Λ∆FP 1 + Λ∆FPF ′

)′ (
Λ∆FP∆FΛ′

)−1
Λ∆FΦ′

follows directly from Lemma 3. By Assumptions 5 and 6, this reduces to FSkΦ
′ = fΦ′f , which also implies

the stated probability limit of ε̂.

The following lemma establishes the asymptotic independence of F̂ t and ηt+1, which is used to find the
asymptotic distribution of α̂.

Lemma 7. Under Assumptions 1-4, plimN,T→∞T
−1
∑
t F̂ tηt+1 = 0 for all h.

Proof. It suffices to show that plimN,T→∞T
−1
∑
t F̂C,tηt+1 = 0 for all h, and to do so we examine each

term in Equation A1. The four terms involving φ0 becomes op(1) since each is Op(1) by Lemma 2, since
they do not possess t subscripts, and since T−1

∑
t ηt+1 = op(1). By similar rationale, the four terms that

are post-multiplied by F t are op(1) since T−1
∑
t F tηt+1 = op(1) by Assumption 4.3. Two of the remaining

terms depend on the expression T−1
∑
t

(
N−1Φ′JNεt

)
ηt+1, which is op(1) because∣∣∣∣∣∣T−1N−1

∑
i,t

φiεitηt+1

∣∣∣∣∣∣ ≤ N−1/2

T−1
∑
t

(
N−1/2

∑
i

φiεit

)2


1/2(
T−1

∑
t

η2
t+1

)1/2

= op(1)

The last two remaining terms depend on T−1
∑
t

(
N−1T−1ω′JTεJNεt

)
ηt+1, which is op(1) following the

same argument used to prove Lemma 2.14.

A.5 Asymptotic Distributions

Lemma 8. Under Assumptions 1-4, as N,T →∞ we have

N−1T−3/2Z ′JTXJNX
′JTη

d−→ N
(
0,Λ∆FPΓFηP∆FΛ′

)
.
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Proof.

N−1T−2Z ′JTXJNX
′JTη = N−1T−2ΛF ′JTFΦ′JNΦF ′JTη +N−1T−2ΛF ′JTFΦ′JNε

′JTη

+N−1T−2ω′JTFΦ′JNΦF ′JTη +N−1T−2ω′JTFΦ′JNε
′JTη +N−1T−2ΛF ′JTεJNΦF ′JTη

+N−1T−2ΛF ′JTεJNε
′JTη +N−1T−2ω′JTεJNΦF ′JTη +N−1T−2ω′JTεJNε

′JTη

= Op(T
−1/2) +Op(T

−1/2N−1/2) +Op(T
−1) +Op(N

−1/2T−1) +Op(T
−1/2δ−1

NT )

+Op(T
−1/2δ−1

NT ) +Op(T
−1) +Op(T

−1/2δ−1
NT ).

As N,T → ∞, the first term is dominant and the stated asymptotic distribution obtains by Lemma 2 and
Assumption 4.2.

Theorem 3. Under Assumptions 1-6, as N,T →∞ we have

√
TN (α̂i − α̃i)

Ai

d−→ N (0, 1)

where A2
i is the ith diagonal element of Âvar(α̂) = Ωα

(
1
T

∑
t η̂

2
t+1(Xt − X̄)(Xt − X̄)′

)
Ω′α, η̂t+1 is the

estimated 3PRF forecast error and

Ωα = JN

(
1

T
SXZ

)(
1

T 3N2
W ′

XZSXXWXZ

)−1(
1

TN
W ′

XZ

)
.

Proof. Given the definition of α̃i, note that

Nα̂i −Nα̃i
d
= SiT

−1JNX
′JTZ

(
T−3N−2Z ′JTXJNX

′JTXJNX
′JTZ

)−1
T−2N−1Z ′JTXJNX

′JTη.

The asymptotic distribution and consistent variance estimator follow directly from Lemma 8 and previously
derived limits, Assumptions 5 and 6, and noting that η̂t+1 = ηt+1 + op(1) by Theorem 1.

Theorem 4. Under Assumptions 1-6, as N,T →∞ we have

√
T (ŷt+1 − ỹt+1)

Qt

d−→ N (0, 1)

where ỹt+1 = ȳ + x′tGαβ and Q2
t is the tth diagonal element of 1

N2JTXÂvar(α̂)X ′JT .

Proof. The result follows directly from Theorems 2 and 3. Note that the theorem may be restated replacing

ỹt+1 with Etyt+1 since the argument leading up to Theorem 1 implies that
√
T ỹt+1

p−−−−−→
T,N→∞

Etyt+1. By

Slutsky’s theorem convergence in distribution follows, yielding the theorem statement in the paper’s text.

Theorem 5. Under Assumptions 1-6, as N,T →∞ we have

√
T
(
β̂ −Gββ

)
d−→ N (0,Σβ)

where Σβ = Σ−1
z ΓFηΣ

−1
z and Σz = Λ∆FΛ′ + ∆ω. Furthermore,

Âvar(β̂) =
(
T−1F̂

′
JT F̂

)−1

T−1
∑
t

η̂2
t+1(F̂ t − µ̂)(F̂ t − µ̂)′

(
T−1F̂

′
JT F̂

)−1

is a consistent estimator of Σβ.
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Proof. Define Gβ = β̂
−1

1 β̂2β̂
−1

3

(
N−1T−2Z ′JTXJNX

′JTF
)
. The asymptotic distribution follows directly

from Lemma 8 noting that

β̂ −Gββ = β̂
−1

1 β̂2β̂
−1

3

(
N−1T−2Z ′JTXJNX

′JTη
)
.

The asymptotic covariance matrix (before employing Assumptions 5 and 6) is Σβ = ΨβΓFηΨ
′
β , where

Ψβ = Σ−1
z Λ∆FP∆FΛ′

(
Λ∆FP∆FP∆FΛ′

)−1
Λ∆FP . This expression follows from Lemma 8 and the

probability limits derived in the proof of Lemma 4. Assumptions 5 and 6 together with the derivation in the
proof of Theorem 1 reduces Σβ to the stated form.

To show consistency of Âvar(β̂), note that
√
T
(
β̂ −Gββ

)
=
(
T−1F̂

′
JT F̂

)−1

T−1/2F̂
′
JTη, which

implies that the asymptotic variance of β̂ is equal to the probability limit of(
T−1F̂

′
JT F̂

)−1

T−1F̂
′
JTηη

′JT F̂
(
T−1F̂

′
JT F̂

)−1

. (A4)

Assumption 2.5 and Lemma 7 imply that plimT,N→∞ T−1F̂
′
JTηη

′JT F̂ = plimT,N→∞T
−1
∑
t η

2
t+1(F̂ t −

µ̂)(F̂ t − µ̂)′. By Theorem 1, ηt+1 = η̂t+1 + op(1), which implies that Âvar(β̂) and (A4) share the same

probability limit, therefore Âvar(β̂) is a consistent estimator of Σβ .

Lemma 9. Under Assumptions 1-4, as N,T →∞ we have

(i) if
√
N/T → 0, then for every t

N−1/2T−1Z ′JTXJNεt
d−→ N

(
0,Λ∆FΓΦε∆FΛ′

)
(ii) if lim inf

√
N/T ≥ τ ≥ 0, then

N−1Z ′JTXJNεt = Op(1).

Proof. From Lemma 2 we have

N−1T−1Z ′JTXJNεt = F̂ 3,t −N−1T−1Z ′JTXJN (φ0 + ΦFt)

= Λ
(
T−1F ′JTF

) (
N−1Φ′JNεt

)
+ Λ

(
N−1T−1F ′JTεJNεt

)
+
(
T−1ω′JTF

) (
N−1Φ′JNεt

)
+
(
N−1T−1ω′JTεJNεt

)
= Op(N

−1/2) +Op(δ
−1
NTT

−1/2) +Op(N
−1/2T−1/2) +Op(δ

−1
NTT

−1/2).

When
√
N/T → 0, the first term determines the limiting distribution, in which case result (i) obtains by

Assumption 4.1.

When lim inf
√
N/T ≥ τ > 0, we have T

(
N−1T−1Z ′JTXJNεt

)
= Op(1) since lim inf T/

√
N ≤ 1/τ <

∞.

Define

H0 = F̂AF̂
−1

B N−1T−1Z ′JTXJNφ0 and H = F̂AF̂
−1

B N−1T−1Z ′JTXJNΦ. (A5)

Theorem 6. Under Assumptions 1-6, as N,T →∞ we have for every t

(i) if
√
N/T → 0, then √

N
[
F̂ t − (H0 +HF t)

]
d−→ N (0,ΣF )

(ii) if lim inf
√
N/T ≥ τ ≥ 0, then

T
[
F̂ t − (H0 +HF t)

]
= Op(1)
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where ΣF =
(
Λ∆FΛ′ + ∆ω

) (
Λ∆2

FΛ′
)−1

Λ∆FΓΦε∆FΛ′
(
Λ∆2

FΛ′
)−1 (

Λ∆FΛ′ + ∆ω

)
.

Proof. The result follows directly from Lemma 9, noting that F̂ t−(H0 +HF t) = F̂AF̂
−1

B N−1T−1Z ′JTXJNεt.
The asymptotic covariance matrix ΣF is found from Lemma 9, the probability limits derived in the proof of
Lemma 3, and by Assumption 5 (which sets P = I).

A.6 Automatic Proxy Selection

Theorem 7. Let Assumptions 1-5 hold with the exception of Assumptions 2.4, 3.3, and 3.4. Then the L-
automatic-proxy three pass regression filter forecaster of y automatically satisfies Assumptions 2.4, 3.3, 3.4,
and 6 when L = Kf . As a result, the L-automatic-proxy is consistent and asymptotically normal according
to Theorems 1 and 4.

Proof. We begin by showing that Assumption 6 is generally satisfied. If Kf = 1, Assumption 6 is satisfied
by using y as the proxy (see Corollary 1). For Kf > 1, we proceed by induction to show that the automatic
proxy selection algorithm constructs a set of proxies that satisfies Assumption 6. In particular, we wish
to show that the automatically-selected proxies have a loading matrix on relevant factors (Λf ) that is full
rank, and that their loadings on irrelevant factors are zero. We use superscript (k) to denote the use of k
automatic proxies.

Denote the 1-automatic-proxy 3PRF forecast by ŷ(1). We have from Equation 1 that

r(1) = y − ŷ(1) = η + Fβ − F̂
(1)
β̂

(1)
= F

(
β −Φ′Ω(1)Fβ

)
+ η + εΩ(1)η,

where Ω(1) = JNX
′JTZ

(
Z ′JTXJNX

′JTXJNX
′JTZ

)−1
Z ′JTXJNX

′JT . For r(1), Ω(1) is con-
structed based on Z = y. Recalling that β = (β′f ,0

′)′, it follows that y has zero covariance with irrelevant

factors, so ŷ(1) also has zero covariance with irrelevant factors and therefore r(1) has population loadings of
zero on irrelevant factors. To see this, note that irrelevant factors can be represented as F [0, I]′, where the
zero matrix is Kg ×Kf and the identity matrix is dimension Kg. This, together with Assumptions 2.5 and
4.3, implies that the cross product matrix [0, I]F ′r(1) is zero in expectation.

The induction step proceeds as follows. By hypothesis, suppose we have k < Kf automatically-selected
proxies with factor loadings [Λf,k,0], where Λf,k is k × Kf and full row rank. The residual from the k-

automatic-proxy 3PRF forecast is r(k) = y − ŷ(k), which has zero population covariance with irrelevant
factors by the same argument given in the k = 1 case. It is left to show that the r(k)’s loading on relevant
factors is linearly independent of the rows of Λf,k. To this end, note that these relevant-factor loadings

take the form βf −Φ′fΩ
(k)fβf , where f = FSKf

and SKf
= [I,0]′ is the matrix that selects the first Kf

columns of the matrix that it multiplies (the form of this loading matrix follows again from β = [β′f ,0
′]′).

Also note that as part of the induction hypothesis, Ω(k) is constructed based on Z = (r(1), ..., r(k−1)).

Next, project r(k)’s relevant-factor loadings onto the column space of Λ′f,k. The residual’s loading vector

is linearly independent of Λ′f,k if the difference between it and its projection on Λ′f,k is non-zero. Calculating

this difference, we find (I −Λ′f,k(Λf,kΛ
′
f,k)−1Λf,k)

(
I −Φ′fΩ

(k)f
)
βf . Because

(
I −Φ′fΩ

(k)f
)
6= 0 with

probability one, this difference is zero only when Λ′f,k(Λf,kΛ
′
f,k)−1Λf,k = I. But the induction hypothesis

ensures that this is not the case so long as k < Kf . Therefore the difference between the r(k)’s loading vector
and its projection onto the column space of Λ′f,k is nonzero, thus its loading vector is linearly independent
of the rows of Λf,k. Therefore we have constructed proxies that satisfy Assumption 6.

We next show that the L-automatic-proxy 3PRF satisfies Assumptions 2.4, 3.3, and 3.4 when the re-
maining parts of Assumptions 1-6 hold. Each automatic proxy is a forecast error, zt = yt+1 − ŷt+1, where
the forecast ŷt+1 is a linear combination of predictors. By similar limiting arguments as those leading up
to Theorem 1, this linear combination can be generically expressed as N−1a′xt, where a = Op(1). We can
rewrite an automatic proxy zt (suppressing constants) as zt = b′f t + ωt with ωt = ηt+1 +N−1a′εt.
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By Assumption 2.5, the ηt+1 and εt components of ωt are independent and can be handled separately.
By Assumption 2.5 and 4.2, the ηt+1 component directly satisfies Assumptions 2.4, 3.3, and 3.4.

Assumption 2.4 also requires E( 1
N

∑
j ajεjt) = 0, and E|| 1

N

∑
j ajεjt||4 ≤ M, 1√

TN

∑
j,t ajεjt = Op(1),

which are satisfied by Assumptions 2.3 and 3.2. Assumption 3.3 requires E
∣∣∣ 1√

TN

∑
j,t ajεjtFt(m)

∣∣∣2 ≤ M ,

which is satisfied by Assumption 4.3. Assumption 3.4 requires E
∣∣∣ 1√

TN

∑
j,t bjεjtεit

∣∣∣2 ≤M , which is satisfied

by Assumption 3.2.

Together these results imply that the L-automatic-proxy satisfies the conditions of Theorems 1 and 4
when L = Kf .

The following proposition simply shows that the 3PRF is the constrained least squares estimator of a
projection of y onto X. The body of the text interprets this constraint as the assumption that the relevant
factor space is spanned by one’s choice of proxy variables.

Theorem 8. The three-pass regression filter’s implied N -dimensional predictive coefficient, α̂, is the solution
to

arg min
α0,α
||y − α0 −Xα||

subject to (I −WXZ(S′XZWXZ)−1WXZ)α = 0.

Proof. By the Frisch-Waugh-Lovell Theorem, the value of α that solves this problem is the same as the
value that solves the least squares problem for ||JTy − JTXα||. From Amemiya (1985, Section 1.4), the
estimate of α that minimizes the sum of squared residuals (JTy − JTXα)′(JTy − JTXα) subject to the
constraint Q′α = c is found by

R(R′SXXR)−1R′X ′sXy + [I −R(R′SXXR)−1R′SXX ]Q(Q′Q)−1c

for R such that R′Q = 0 and [ Q R ] is nonsingular. In our case,

c = 0 and Q = (I −WXZ(S′XZWXZ)−1WXZ),

hence we can let R = WXZ and the result follows.

A.7 Relevant Proxies and Relevant Factors

This section explores whether, given our normalization assumptions, it is possible in general to reformulate
the multi-factor system as a one-factor system, and achieve consistent forecasts with the 3PRF using a
single automatically selected proxy (that is, the target-proxy 3PRF). The answer is that this is not generally
possible. We demonstrate this both algebraically and in simulations. The summary of this section is:

I. There is a knife-edge case (which is ruled out by Assumption 5) in which the target-proxy 3PRF is
always consistent regardless of Kf .

II. In the more general case (consistent with Assumption 5) the target-proxy 3PRF is inconsistent for
Kf > 1 but the Kf -automatic-proxy 3PRF is consistent.

To demonstrate points 1 and 2, we begin from our normalization assumptions and show that three
necessary conditions for consistency must hold for any rotation of the factor model. Second, we show that in
the knife-edge case the target-proxy 3PRF is consistent (ruled out in our main development by assumption)
but that the general case consistency continues to require as many proxies as there are relevant factors. This
remains true when the multi-factor model is reformulated in terms of a single factor. Third, we provide
simulation evidence that supports these conclusions.
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Heuristically speaking, the main intuition of this section is the following: The 3PRF’s consistency requires
that the first-pass and second-pass regressions be consistent, which in turn requires that they have no omitted
variable bias. For the first pass regression this is satisfied by the assumption that the factors are orthogonal.
For the second pass regression, since it is on the loadings this is satisfied only once all the relevant factors
have been spanned since we only require that relevant factors’ loadings and irrelevant factors’ loadings are
orthogonal (a simple normalization assumption) and not that each relevant factor’s loading is orthogonal to
every other (an assumption that is stronger than mere normalization).

A.7.1 Our Original Representation

Our analysis centers on the the probability limit given in Lemma 5. For simplicity, we assume in this
appendix that y, x, F and φ are mean zero, Kf = dim(f) > 1, suppress time subscripts, and assume

E(FF ′) = ∆F =

[
∆f ∆fg

∆′fg ∆g

]
, E(fε′) = 0 , E(gε′) = 0.

The points we make in this simpler case transfer directly to the model described in the main text. The
probability limit of ŷ may therefore be rewritten as

ŷ
p−−−−−→

T,N→∞
F ′P∆FΛ′

[
Λ∆FP∆FP∆FΛ′

]−1
Λ∆FP∆Fβ. (A6)

By inspection, consistency requires three conditions to ensure that the coefficient vector post-multiplying F ′

in (A6) reduces to (β′f ,0)′. These conditions are:

1. Λ =
[

Λf 0
]

(Relevant proxies)

2. ∆fg = 0 (Relevant factors orthogonal to irrelevant factors)

3. Pfg = 0 (Relevant factors loadings orthogonal to irrelevant factors loadings).

To see that these are necessary, first note that condition 1 implies that P∆FΛ′ reduces to[
Pf∆fΛ

′
f + Pfg∆

′
fgΛ

′
f

P ′fg∆fΛ
′
f + Pg∆fgΛ

′
f

]
. (A7)

Since the same matrix (
[
Λ∆FP∆FP∆FΛ′

]−1
Λ∆FP∆Fβ) post-multiplies both of these rows, we can

here determine the necessity of conditions 2 and 3. The bottom row of (A7) must be 0 for the irrelevant
factors to drop out. Conditions 2 and 3 achieve this while avoiding degeneracy of the underlying factors and
factor loadings.

Given necessary conditions 1–3, we have that ŷ is reduced to

f ′Pf∆fΛ
′
f

[
Λf∆fPf∆fPf∆fΛ

′
f

]−1
Λf∆fPf∆fβf . (A8)

Consistency requires that (A8) reduces to f ′βf . We are now in a position to identify the knife-edge and
general cases. The knife-edge case occurs when Pf∆f = σI and Λf = βf , for positive scalar σ. In this case
(A8) becomes

σβf
[
σ2β′f∆fβf

]−1
σβ′f∆fβf = βf .

The target-proxy 3PRF is consistent even though there are Kf > 1 relevant factors in the original system.

In the general case, we only assume P f ,∆f ,Λf are invertible (so that P f∆f need not be an equivariance
matrix). In this case (A8) reduces to f ′βf . The key condition here is the invertibility of these matrices,
which requires using Kf > 1 relevant proxies (obtainable by the auto-proxy algorithm). This is the paper’s
main result.
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Recalling the discussion in Stock and Watson (2002a) and Section 2.2, it is quite natural that the final
condition required for consistency involves both the factor (time-series) variances and the (cross-sectional)
variances of the factor loadings: This is the nature of identification in factor models. The general point is
that requirements for identification and consistent estimation of factor models requires assumptions regarding
both factors and loadings. By convention we assume that factors are orthogonal to one another. The loadings
can then be rotated in relation to the factor space we’ve assumed, but not all rotations are observationally-
equivalent once we’ve pinned down the factor space.

A.7.2 A One-Factor Representation of the Multi-Factor System

Let us rewrite the factor system by condensing multiple relevant factors into a single relevant factor:

h = β′ff .

In addition, we can rotate the original factors so that the first factor h is orthogonal to all others. Let this
rotation be achieved by some matrix M such that

m = M ′f , E
[(

h
m

)(
h m

)]
=

(
β′f
M ′

)
∆f

(
βf M

)
=

[
∆h 0
0 ∆m

]
. (A9)

The new formulation therefore satisfies

y = h+ η

x = Ψhh+ Ψmm+ Ψgg + ε

Λ =
[

1 0
]
.

Now h is the single relevant factor while (m′, g′)′ are the irrelevant factors. We have represented the system
such that first two necessary conditions for consistency are satisfied. We now show that the third necessary
condition will not be satisfied in general.

Let us write the loadings in this rotated system (Ψh,Ψm,Ψg) in terms of the loadings in the original
system (Φf ,Φg). Because E(hm′),E(hg),E(mg′) are all zero, we recover

E ((x−Ψhh)h) = 0 ⇒ Ψh =
1

β′f∆fβf
Φf∆fβf

E ((x−Ψmm)m′) = 0 ⇒ Ψm = Φf∆fM
(
M ′∆fM

)−1

E ((x−Ψgg)g′) = 0 ⇒ Ψg = Φg.

The covariance matrix of loadings is therefore

N−1
N∑
i=1

 ψh,i
ψm,i
ψg,i

( ψh,i ψ′m,i ψ′g,i
)

= N−1
N∑
i=1

 ψ2
h,i ψh,iψ

′
m,i ψh,iψ

′
g,i

ψh,iψm,i ψm,iψ
′
m,i ψm,iψ

′
g,i

ψh,iψg,i ψg,iψ
′
m,i ψg,iψ

′
g,i

 .
and the third necessary condition is determined by whether or not the matrix

N−1
N∑
i=1

[
ψh,iψ

′
m,i ψh,iψg,i

]
equals zero in the limit. The second element ψh,iψg,i has a zero limit whenever the original system satisfies its

three necessary conditions. But the first element ψh,iψ
′
m,i has a limit determined by whether the knife-edge
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or the general case holds since

N−1
N∑
i=1

ψh,iψ
′
m,i

p−−−−→
N→∞

1

β′f∆fβf
β′f∆fPf∆fM

(
M ′∆fM

)−1
.

The critical term in determining whether this expression reduces to zero is β′f∆fPf∆fM . If the knife-edge

condition holds, then we have β′f∆fPf∆fM = σβ′f∆fM = 0 in light of (A9). However, in the general

case, β′f∆fPf∆fM 6= 0 even though (A9) holds and the third necessary condition cannot generally be
satisfied in this rewritten system.

A.7.3 Simulation Study

We now run a Monte Carlo to demonstrate that, when there are multiple relevant factors, a target-proxy
achieves the infeasible best only when the knife-edge case holds. Our simulation design uses the following:

y = fι+ η, X =
[
f g

]
Φ′ + ε

where ι is Kf × 1 ones vector, g (T ×Kg), Φ (N ×Kf + Kg), η (T × 1), and ε (T ×N) are iid standard
normal, and f (T ×Kf ) is iid normal with standard deviation σf .

The infeasible best forecast for this system is fι. We use six factors, three relevant and three irrelevant
(Kf = Kg = 3) and consider different values forN,T and σf . We considerN = T = 200 andN = T = 2, 000.
We use an identity covariance matrix for factor loadings (P = I) and consider two values for σf : a knife-edge
(equivariant) case

[
1 1 1

]
and a more general (non-equivariant) case

[
0.5 1 2

]
.

Table A1 lends simulation support to our algebraic proof. We focus on in-sample results since out-of-
sample results are qualitatively similar.

In the knife-edge case the target-proxy 3PRF appears consistent. For N = T = 2, 000 the correlation
between the 3PRF forecast and the infeasible best forecast is 0.993, and their relative R2 is 0.9901. For
N = T = 200 these numbers are lower, but that is attributable to the smaller sample.

In the general case the target-proxy 3PRF appears inconsistent. The relativeR2 is 0.8425 forN = T = 200
and 0.8586 for N = T = 2, 000; the correlation is 0.9169 for N = T = 200 and 0.9241 for N = T = 2, 000.
This agreement across the two sample sizes is strongly suggestive that the inconsistency is not a small sample
issue, but rather holds in large N,T for which 2,000 is a good approximation. Furthermore, the relative R2

increases notably as we move to 2 auto-proxies: 0.9736 for N = T = 200 and 0.9762 for N = T = 2, 000.
Once we have 3 auto-proxies (as our theorem states) the simulation evidence suggests that the 3PRF is
consistent. The relative R2 is 0.9938 for N = T = 200 and 0.9983 for N = T = 2, 000.

A.8 Accuracy of Asymptotic Theory in Finite Samples

Our first experiment evaluates the accuracy of finite sample approximations based on the asymptotic dis-
tributions we have derived. We examine the distributions of predictive coefficient estimates as well as the
forecasts themselves. For each Monte Carlo draw, we first compute the estimates ŷ, α̂ and β̂. Then we
standardize each estimate in accordance with Theorems 3, 4 and 5 by subtracting off the mean adjustment
term and dividing by the respective asymptotic standard error estimate. According to the theory presented
in Section 2, these standardized estimates should follow a standard normal distribution for large N and T .

For each estimator (corresponding to Figures 1-3) we plot the distribution of standardized estimates
across simulations (solid line) versus the standard normal pdf (dashed line). The four panels of each figure
correspond to N = 100, T = 100 and N = 500, T = 500 in the cases that (i) there is a single relevant factor
and (ii) there is one relevant and one irrelevant factor. Factors, factor loadings and shocks are drawn from
a standard normal distribution. The predictive loading on the relevant factor is set to one (that is, the
infeasible best R2 is set equal to 50%). We simulate 5,000 samples for each set of parameter values.
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Table A1: Simulation Study

In-Sample Out-of-Sample
# auto proxies: 1 2 3 1 2 3

N = T = 200

σf =
[

1 1 1
]

ŷR2

fιR2 0.9607 0.9316

ρ(ŷ,fι) 0.9678 0.9649
σf =

[
0.5 1 2

]
ŷR2

fιR2 0.8425 0.9736 0.9938 0.8307 0.9580 0.9735

ρ(ŷ,fι) 0.9169 0.9806 0.9892 0.9136 0.9791 0.9884

N = T = 2, 000

σf =
[

1 1 1
]

ŷR2

fιR2 0.9901 0.9850

ρ(ŷ,fι) 0.9930 0.9929
σf =

[
0.5 1 2

]
ŷR2

fιR2 0.8586 0.9762 0.9983 0.8575 0.9746 0.9962

ρ(ŷ,fι) 0.9241 0.9877 0.9981 0.9238 0.9876 0.9981

Notes: ŷR2

fιR2 denotes the average ratio of 3PRF R2 to the infeasible best R2. ρ(ŷ,fι) gives the average time
series correlation between the 3PRF forecast and the infeasible best forecast.

These results show that the standard normal distribution successfully describes the finite sample behavior
of these estimates, consistent with the results in Section 2. In all cases but one we fail to reject the standard
normal null hypothesis for standardized estimates. The exception occurs for β̂ when N = 100 and T = 100,
which demonstrates a minor small sample bias (Figure A3, upper right). This bias vanishes when the sample
size increases (Figure A3, lower right). The simulated coverage rates of a 0.95 confidence interval for ŷt+1

are also well behaved. For N = 100 and T = 100 the simulated coverage is 0.945 when there is no irrelevant
factor and 0.94 when an irrelevant factor exists. For N = 500 and T = 500 the simulated coverage is
0.947 and 0.949, respectively. Altogether, simulations provide evidence that the 3PRF accurately estimates
the infeasible best forecasts and predictive coefficients, and that its theoretical asymptotic distributions
accurately approximate the finite sample distributions for 3PRF estimates.

A.9 Information Criterion Monte Carlo

In Section 4.2 we discuss an information criterion for selecting the number of predictive indices when using
the auto-proxy 3PRF. Our degrees of freedom calculation uses the “Trace of the Krylov Representation”
method of Kramer and Sugiyama (2011). In particular, when using m 3PRF automatic proxies, the degrees
of freedom are given by

D̂oF (m) = 1 +

m∑
j=1

cjtrace(Kj)−
m∑

l,j=1

t′lK
jtl + (y − ŷm)′

m∑
j=1

Kjvj +m
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N = 100, T = 100, Kg = 0 N = 100, T = 100, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

N = 500, T = 500, Kg = 0 N = 500, T = 500, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

Figure A1: Simulated Distribution, ŷt+1

where K = XX ′, cj are elements of the vector c = B−1Ty, B is a Krylov basis decomposition, T is the
matrix of PLS factor estimate vectors tj , and vj are columns of the matrix T (B−1)′. The BIC is then

calculated as
∑
t(yt − ŷm,t)2)/T + log(T )σ̂2D̂oF (m)/T where σ̂ =

√∑
t(yt − ŷm,t)2)/(T −DoF (m)). We

refer readers to Kramer and Sugiyama (2011) for additional details.

Table A2 studies the accuracy of the information criterion in the simulation specifications of Table 3,
and compares how 3PRF1 forecasts compare to those using the number of 3PRF factors selected by the
information criterion (denoted 3PRFIC). We report the out-of-sample forecast R2 for 3PRF1 and 3PRFIC,
as well as the average number of factors selected by the information criterion. In the T,N = 100 case, the
performance of 3PRF suffers when the number of factors is chosen according to the information criterion.
The largest setbacks occur when the irrelevant factors or idiosyncrasies display strong serial dependence.
The average number of factors chosen ranges from 1.1 to 3.4

In larger sample (T,N = 200), 3PRF performance is much less affected by relying on the information
criterion to select the number of factors. The drop in R2 versus 3PRF tends to be small, and for most
parameter configurations the average number of predictors chosen is 1.0.

The table also includes some pathological cases in which 3PRFIC outperforms 3PRF1. This occurs when
both the irrelevant factors and the idiosyncrasies are strongly serially correlated, but the relevant factors are
quickly mean reverting. In this case, the first 3PRF factor is corrupted by persistent irrelevant information,
and additional 3PRF factors allow the procedure to pick up residual relevant information missed by the first
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N = 100, T = 100, Kg = 0 N = 100, T = 100, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

N = 500, T = 500, Kg = 0 N = 500, T = 500, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

Figure A2: Simulated Distribution, α̂

factor.

A.10 Partial Least Squares

Like the three-pass regression filter and principal components, partial least squares (PLS) constructs fore-
casting indices as linear combinations of the underlying predictors. These predictive indices are referred
to as “directions” in the language of PLS. The PLS forecast based on the first K PLS directions, ŷ(k), is
constructed according to the following algorithm (as stated in Hastie, Tibshirani, and Friedman (2009)):

1. Standardize each xi to have mean zero and variance one by setting x̃i = xi−Ê[xit]
σ̂(xit)

, i = 1, ..., N

2. Set ŷ(0) = ȳ, and x
(0)
i = x̃i, i = 1, ..., N

3. For k = 1, 2, ...,K

(a) uk =
∑N
i=1 φ̂kix

(k−1)
i , where φ̂ki = Ĉov(x

(k−1)
i ,y)

(b) β̂k = Ĉov(uk,y)/V̂ ar(uk)

(c) ŷ(k) = ŷ(k−1) + β̂kuk
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N = 100, T = 100, Kg = 0 N = 100, T = 100, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

N = 500, T = 500, Kg = 0 N = 500, T = 500, Kg = 1

−4 −2 0 2 4 −4 −2 0 2 4

Figure A3: Simulated Distribution, β̂

(d) Orthogonalize each x
(k−1)
i with respect to uk:

x
(k)
i = x

(k−1)
i −

(
Ĉov(uk,x

(k−1)
i )/V̂ ar(uk)

)
uk, i = 1, 2, ..., N.

A.11 Empirical Procedures

The recursive out-of-sample forecasting procedure for macroeconomic data following Bai and Ng (2008)
and Stock and Watson (2012) is as follows. Before forecasting each target, we first transform the data by
partialing the target and predictors with respect to a constant and four lags of the target. To construct a
time t + 1 out-of-sample forecast, consider the data known at time t: Yt ≡ {yt,xtzt, yt−1,xt−1, zt−1, . . .}.
Calculate either the 3PRF’s three passes or PCR’s eigenvalue decomposition on Yt. For the target-proxy
3PRF: the first pass regressions are of xi,τ−1 on yτ and a constant for τ = 1, 2, . . . , t, separately run for each

i = 1, 2, . . . , N , yielding φ̂i; the second pass regression is of xi,τ on φ̂i and a constant for i = 1, 2, . . . , N ,

separately run for each τ = 1, 2, . . . , t, yielding f̂τ ; the third pass regression is of yτ on f̂τ−1 and a constant
for τ = 1, 2, . . . , t, yielding β̂0, β̂. Then the out-of-sample forecast is constructed as β̂0 + f̂tβ̂.

For financial data, we do not partial the target or predictors as a first step. But the remaining steps of
the recursive out-of-sample forecasting procedure are done, to ensure that a time t forecast (of the time t+ 1
realization) uses only information (and estimates) available at time t.
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Table A2: Simulated Out-of-sample Forecast Performance Using Information Criterion

N = T = 100 N = T = 200
ρf ρg a d 3PRF1 3PRFIC #IC 3PRF1 3PRFIC #IC

Panel A: Normal Factors
0 0 0 0 28.4 16.8 1.1 38.2 34.4 1.0

0.3 0.9 0.3 0 26.3 16.8 2.0 37.4 34.8 1.0
0.3 0.9 0.3 0.9 25.2 17.8 1.4 36.8 35.3 1.0
0.3 0.9 0.9 0 18.1 23.8 2.4 31.9 38.1 2.0
0.3 0.9 0.9 0.9 18.0 24.1 2.5 31.5 38.3 2.0
0.9 0.3 0.3 0 33.0 20.9 1.1 41.0 34.3 1.0
0.9 0.3 0.3 0.9 30.8 21.8 1.3 40.3 36.0 1.0
0.9 0.3 0.9 0 31.7 27.1 1.4 37.6 37.1 1.2
0.9 0.3 0.9 0.9 30.7 27.9 1.6 36.3 36.5 1.3

Panel B: Moderately Weak Factors
0 0 0 0 21.3 7.2 1.1 34.5 30.4 1.0

0.3 0.9 0.3 0 20.1 8.0 1.1 33.5 30.6 1.0
0.3 0.9 0.3 0.9 17.7 8.0 1.4 32.1 30.6 1.0
0.3 0.9 0.9 0 9.6 16.1 2.8 24.4 32.8 2.2
0.3 0.9 0.9 0.9 9.4 17.5 2.9 23.6 33.4 2.4
0.9 0.3 0.3 0 27.5 10.9 1.1 37.5 29.9 1.0
0.9 0.3 0.3 0.9 23.7 11.4 1.3 35.6 31.2 1.0
0.9 0.3 0.9 0 27.8 23.5 1.4 33.0 32.6 1.2
0.9 0.3 0.9 0.9 26.7 23.7 1.6 31.3 31.8 1.3

Panel C: Weak Factors
0 0 0 0 8.4 -16.5 1.2 24.6 19.4 1.0

0.3 0.9 0.3 0 7.7 -11.9 1.3 23.6 19.8 1.0
0.3 0.9 0.3 0.9 3.3 -10.9 1.9 19.7 17.1 1.0
0.3 0.9 0.9 0 -0.9 2.1 3.1 10.7 20.9 2.8
0.3 0.9 0.9 0.9 -1.5 3.5 3.4 10.1 21.5 3.0
0.9 0.3 0.3 0 17.6 -5.8 1.1 29.0 20.2 1.0
0.9 0.3 0.3 0.9 11.6 -4.4 1.6 24.6 19.3 1.0
0.9 0.3 0.9 0 24.0 17.5 1.4 26.5 26.4 1.2
0.9 0.3 0.9 0.9 22.2 17.8 1.5 24.9 25.3 1.3

Notes: The table reports performance in terms of out-of-sample forecast percentage R2 for the 3PRF based on
the actual number of relevant factors (column 3PRF1) or the number of factors selected by an information
criterion (column 3PRFIC). For the IC version, we report the average number of factors chosen by the
criterion (column #IC). The data generating processes are described in Section 4 and Table 3.

A.12 Portfolio Data Construction

We construct portfolio-level log price-dividend ratios from the CRSP monthly stock file using data on prices
and returns with and without dividends. Twenty-five portfolios (five-by-five sorts) are formed on the basis of
underlying firms’ market equity and book-to-market ratio, mimicking the methodology of Fama and French
(1992). Characteristics for year t are constructed as follows. Market equity is price multiplied by common
shares outstanding at the end of December. Book-to-market is the ratio of book equity in year t−1 to market
equity at the end of year t. Book equity is calculated from the Compustat file as book value of stockholders’
equity plus balance sheet deferred taxes and investment tax credit (if available) minus book value of preferred
stock. Book value of preferred stock is defined as either the redemption, liquidation or par value of preferred
stock (in that order). When Compustat data is unavailable, we use Moody’s book equity data (if available)
from Davis, Fama and French (2000). We focus on annual data to avoid seasonality in dividends, as is
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common in the literature. Unlike Fama and French, we rebalance the characteristic-based portfolios each
month. Using portfolio returns with and without dividends, we calculate the log price-dividend ratio for
these portfolios at the end of December the following year.

For a stock to be assigned to a portfolio at time t, we require that it is classified as common equity (CRSP
share codes 10 and 11) traded on NYSE, AMEX or NASDAQ, and that its t − 1 year-end market equity
value is non-missing. When forming portfolios on the basis of book-to-market we require that a firm has
positive book equity at t− 1. Because we are working with log price-dividend ratios, a firm is included only
if it paid a dividend at any time in the twelve months prior to t. We perform sorts simultaneously rather
than sequentially to ensure uniformity in characteristics across portfolios in both dimensions. Stock sorts
for characteristic-based portfolio assignments are performed using equally-spaced quantiles as breakpoints to
avoid excessively lop-sided allocations of firms to portfolios. That is, for a K-bin sort, portfolio breakpoints
are set equal to the { 100

K , 2 100
K , ..., (K − 1) 100

K } quantiles of a given characteristic.
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